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Abstract: The use of night vision systems in vehicles is becoming increasingly common, not just in luxury cars but also in the 
more cost sensitive sectors. Numerous approaches using infrared sensors have been proposed in the literature to detect and classify 
pedestrians in low visibility situations. However, the performance of these systems is limited by the capability of the classifier. 
This paper presents a novel method of classifying pedestrians in far-infrared automotive imagery. Regions of interest are 
segmented from the infrared frame using seeded region growing. A novel method of filtering the region growing results based 
on the location and size of the bounding box within the frame is described. This results in a smaller number of regions of 
interest for classification, leading to a reduced false positive rate. Histograms of oriented gradient features and local binary 
pattern features are extracted from the regions of interest and concatenated to form a feature for classification. Pedestrians are 
tracked with a Kalman filter to increase detection rates and system robustness. Detection rates of 98%, and false positive rates 
of 1% have been achieved on a database of 2000 images and streams of video; this is a 3% improvement on previously 
reported detection rates. 

 
 

 

 
 

1 Introduction 

Safety is an extremely important factor in the design of 
automotive technology. In recent years, the area of 
automotive safety has  expanded  to  incorporate  the  safety 
of road users outside of the vehicle. These are often referred 
to as vulnerable road users (VRUs) and are most commonly 
pedestrians and cyclists. Consumers are also becoming more 
safety conscious: in a study carried out  by  the  European 
New Car Assessment Program (Euro NCAP) [1], 94% of 
respondents listed safety in vehicles as a major concern [2]. 

A disproportionate number of road fatalities occur during 
the hours of lowest visibility (at night). More than half 
(51%) of fatalities on European roads occur during the 
hours of darkness [3], despite the fact that the traffic 
densities are at their lowest at night. The use of advanced 
driver assistance systems (ADAS) capable of automatically 
determining the location of pedestrians in the vicinity of the 
vehicle contribute to reducing the number of  pedestrian 
road fatailities when utilised in conjunction with other 
factors such as more stringent driver training  and  better 
road infrastructure. ADAS are being developed for use in 
lane detection [4], vehicle detection [5], vehicle navigation 
[6] and parking assistance systems [7] to create a safer 
enviroment for all road users. 

Numerous techniques exist using visible spectrum cameras 
to detect VRUs during daylight hours,  but these are not 
generally suitable for object detection at night, except for 
vehicle detection which can be done through detection of 
the head and tail lights [8]. However, detection of 
pedestrians at night is more difficult because of the lack 
of a visible natural light source. To compensate for this lack 
of ambient illumination, an infrared (IR) sensor can be 
employed to detect the IR heat signature generated by the 
human body. Passive-IR sensors do not require an 
illumination source and rely purely on heat signatures from 
the environment to produce a grey-scale image. Thermal 

radiation from humans peaks in the 8–15 μm far-IR (FIR) 

spectral band, which makes FIR sensors suitable for 
pedestrian detection at night. FIR has also been shown to 
yield better driver response times than active near-IR 
sensors [9]. 

Image processing techniques used within the visible 
spectrum for pedestrian detection are generally not 
applicable in the FIR spectrum [10], because of the inherent 
differences between images generated by cameras in the IR 
and visible spectra. Hanqvist [9] states that pedestrians are 
generally warmer than the background environment and 
thus appear brighter in FIR imagery than other background 
scenery. High intensity thresholds can, therefore be used to 
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segment the bright regions from the darker background. 
Binary thresholding is commonly used in infrared 
pedestrian detection algorithms to isolate bright regions 
which could potentially contain a pedestrian [11–13]. Once 
isolated, these regions of interest (ROI) can be classified as 
containing a pedestrian or non-pedestrian object based on 
their features. 

Accurate classification is vital to avoid non-detection of a 
pedestrian. Some of the more common pedestrian 
classification technologies used in automotive imagery 
include: support vector machines (SVMs) [14], artificial 
neural networks [15] and Adaboosting [16]. Histograms of 
oriented gradients (HOG) features have been successfully 
used in pedestrian detection systems for both day-time [17] 
and night-time [18] environments when used in conjunction 
with a SVM. 

Local binary patterns (LBP) have also been used for feature 
extraction in training pedestrian detection systems [19], and 
have demonstrated high detection rates. LBP have also been 
used for texture classification [20], facial detection in the 
visible spectrum [21] and near-IR spectrum [22]. This paper 
describes the use of LBP features for FIR spectrum-based 
pedestrian detection. 

The fusion of HOG features with LBP features to form a 
feature vector for SVM training has demonstrated improved 
detection rates in day time visible spectrum images when 
compared with a purely HOG trained classifier [23]. Wang 
et al. [23] implement a HOG–LBP-based classifier for 
day-time pedestrian detection that can also compensate for 
partial occlusion caused by objects concealing regions of a 
pedestrian. 

Automotive IR video footage has a high degree of 
continuity, where paths taken by pedestrians can be 
reasonably deterministic over a short period of time; 
therefore tracking of detected pedestrians between frames 
can make detection more robust as the future position of a 
pedestrian can be predicted if detection fails temporarily 
because of the factors such as partial occlusion. A Kalman 
filter is used in the proposed system to track pedestrians 
between IR frames. Kalman filters have been widely used 
to implement tracking in pedestrian detection algorithms in 
both daytime [24] and night-time environments [12]. When 
tracking is used in conjunction with a SVM classifier, 
pedestrian detection rates have been shown to increase in 
FIR video [12]. 

This paper presents a novel method of classifying 
pedestrians in FIR automotive imagery using a combination 
of HOG and LBP feature vectors. This technique has not 
been previously reported for detection of pedestrians in FIR 
images. Results show that HOG–LBP features improve 
upon previous works utilising either HOG or LBP feature 
vectors (but not both), and a comparison of the HOG, LBP 
and combined HOG–LBP features for pedestrian detection 
in FIR images is presented in this paper. The system was 
tested with footage captured using an FIR camera mounted 
on a car in urban scenes with a range of pedestrian and 
non-pedestrian objects present in each scene. Classification 
of pedestrians has been performed on a database of 2000 
FIR images, and streams of FIR video (∼15 000 frames in 

total). Target tracking was implemented for HOG–LBP 
detection in streams of FIR video which resulted in a higher 
detection rate and a lower rate of false positives. 

The structure of this paper is as follows: Section 2 
discusses how ROIs are identified in frames of FIR video. 

 

SVM classifier. The tracking of pedestrians between frames 
is presented in Section 4. The results are described in 
Section 5, and Section 6 presents the conclusions, 
benchmarks the performance of the proposed system with 
the known literature and discusses the direction of potential 
future work in this area. 

 

2 ROI isolation 

To ensure accurate classification, ROIs that could potentially 
contain a pedestrian are segmented from the image using a 
feature-based, seeded region growing method. This has an 
advantage over sliding window approaches which are 
commonly used in pedestrian detection algorithms in the 
automotive domain. The main disadvantage with sliding 
windows is that a pedestrian cannot be detected if the 
image of the pedestrian does not fit within the window 
dimensions. It is also difficult to detect pedestrians that only 
occupy a small proportion of the window, so  trade-offs 
must be established. Previous research has described the use 
of multi-scale windows to resolve this problem, however, 
this method can be computationally expensive as a large 
number of window sizes must be used in order for the 
system to be able to extract all possible variations of 
pedestrian sizes that will be encountered due to differing 
heights and distances from the IR sensor. A single classifier 
can also be implemented with a region growing approach 
rather than cascades of classifiers which are typically used 
for multi-resolution detection to aid sliding window-based 
approaches [25]. 

An IR pedestrian detection system relies on the fact that the 
temperature of a pedestrian is generally higher than the 
surrounding environment. In real-world environments, 
temperatures fluctuate throughout the year and pedestrians 
dress in appropriate clothing for each season which can 
distort the shape of a pedestrian (particularly when heavily 
insulating clothing is worn in cold weather). O’Malley et al. 
[26] refer to this as ‘clothing distortion’ and remove it from 
the image using a morphological closing operation. 
Examples of this distortion can be shown in Fig. 1a where 
two pedestrians are situated in close  proximity  with 
clothing distortion present in their torso regions. A circular 
kernel is typically used in closing operations, however, this 
would cause groups of bright regions in close proximity to 
one another to merge as shown in Fig. 1b, this would 
subsequently cause the classifier to falsely classify the ROI 
as a non-pedestrian object. To prevent merging of 
pedestrians in close proximity, a vertically orientated kernel 
is used to remove the clothing  distortion,  as  shown  in 
Fig. 1c. A vertically oriented kernel preserves the vertical 
shape of a pedestrian which aids segmentation of  ROIs 
from the background imagery. 

After removing the clothing distortion from the image, a 
region growing method is used to grow ‘seed’ regions 
within the image to accurately segment ROIs from the 
background [26]. A high intensity threshold is applied to 
the image in Fig. 2a that separates high intensity seeds from 
the rest of the infrared image, as shown in Fig. 2b. These 
seeds are then grown by applying thresholds of lowering 
intensities until two stopping conditions are met. The first 
stopping condition is the aspect ratio of the bounding box 
which encompasses the ROI 

Section  3  describes  the  extraction  of  HOG  and  LBP 
features from segmented ROIs and the process of training a 

Aspect ratio = 
w

 
h 

(1) 
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Fig. 1  Images from clothing distortion compensation stage 

a Original FIR Image 
b Image closed with a circular kernel, pedestrians have merged 
c FIR image is closed with a vertical kernel, no merging of pedestrians 

 

 

 
 

Fig. 2  Steps involved in seeded region growing 

a Image segment closed with vertical rectangle kernel 
b High intesity threshold segments seeds (threshold = 0.98) 
c Seed is grown to the limits of the parameters set out in Table 1 (threshold = 0.823) 
d Merged with background and filtered by extent and aspect ratio boundaries (threshold = 0.706) 

 

where w is the width of the bounding box and h is the height 
of the bounding box. This is a measure of the proportion of 
the pedestrian’s height to its width. Pedestrians in an image 
from a camera mounted on a vehicle will generally appear 
taller than they are wide (this assumes that the pedestrians 
are not seated, crouched or lying down). The second 
stopping condition is the extent of the region 

bounding boxes within the FIR frame. A pedestrian situated 
far from the sensor will have a bounding box with an upper 
vertex located close to the horizon and the height and width 
of the ROI will be quite small. Pedestrians located close to 
the sensor will have an upper vertex situated further from 
the horizon and will have a taller, wider bounding box. 
Based on these observations, threshold values were 
empirically derived and used to define an area of interest 

Extent = 
a

 
wh 

(2) 
(AOI) within the image. ROIs which have an upper vertex 
located outside of this AOI are discarded. ROIs with an 
upper vertex located inside of the AOI are analysed and 
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where a is the area of the bounding box. A pedestrian’s 
shape is quite compact and will generally fill a large 
proportion of its bounding box. The upper and lower limits 
for the extent and aspect ratio parameters are shown in 
Table 1. When a pedestrian region merges with the 
background scenery it typically breaks the extent or 
aspect ratio limits (Fig. 2d ). When this occurs, the co-
ordinates of the ROIs bounding box (determined in the 
previous threshold, Fig. 2c) are recorded for 
classification. A sample of outputs from the different 
stages of the region growing process are shown in Fig. 2. 

The  number  of  ROIs  for  classification  can  be  
further reduced  based  on  the  position  and  relative  size  
of  their 
based on the location of the upper vertex relative to 
the height of the ROI it is either discarded or stored 
for classification. The values used to filter the ROI are 
scaled, based on the location of the upper vertex 
within the AOI. 

 

Table 1 Limits of extent and aspect-ratio for ROI 

segmentation Parameter

 Val

ue 

extent 0.50–
0.95 
aspect ratio 0.20–
0.49 

 
 

If the bounding box of an ROI falls outside these limits it is not counted as a valid ROI for classification 

 

 
 

Fig. 3  Sample images from the outputs of seeded region growing 

a and b ROIs that satisfy both extent and aspect ratio filters are encompassed by a bounding box, the AOI is located between the horizontal lines within the image 

c and d ROIs that satisfy the distance estimation filter are not removed. The large candidates in the background containing non-pedestrians are removed prior to 
classification 
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This method removes a large number of common false 
positives (street lights, wheel arches etc.) while preserving 
the true positives within the image for classification. 

A number of samples of the output from the ROI isolation 
stages are shown in Fig. 3. Figs. 3a and b display the output of 
the seeded region growing stage, a ROI encompassed by a 
yellow bounding box has satisfied the aspect ratio and 
extent metrics, the thresholds defining the boundaries of the 
AOI are overlaid. Figs. 3c and d display the resulting 
filtered regions according to their location and size. Note 
the removal of background object ROIs not containing 
pedestrians. This method of ROI isolation is more adaptable 
to different pedestrian poses and variations in ambient 
temperature than a window-based method. This leads to 
fewer classification operations by the SVM resulting in 
fewer opportunities for the SVM to generate false positives, 
and a lower computational overhead for the system. 

 

 

3 ROI classification 

The second stage of many existing pedestrian detection 
algorithms is classification of the segmented ROIs. This 
section discusses the features extracted from the ROI and 
used by the classifier to determine if the isolated ROI 
contains a pedestrian.Training data 

 

For training and validation purposes, a database of grey-
scale images was generated by extracting ROIs from on-
road FIR video data, with the region growing algorithm. 
A total of 2000 ROIs were extracted and manually 
labelled (1000 pedestrian and 1000 non-pedestrian). A 
variety of pedestrian poses with differing levels of 
clothing distortion were used to provide a representative 
sample of real-world pedestrian targets. Fig. 4 illustrates 
some examples of pedestrian and non-pedestrian database 
entries. 

Both HOG and LBP feature vectors were calculated 
for each image in the database. These features were then 
concatenated and used to train the SVM classifier. 

 

3.1 Histogram of oriented gradients 
 

To generate a HOG feature vector for a ROI, the ROI 
must first be scaled to a fixed size prior to generating it 
is HOG feature vector. Each ROI is resized to a fixed 
size of 20 × 40 pixels [27] prior to HOG feature vector 
generation. 

The gradient image of the ROI is first calculated by 
performing a convolution with a horizontal gradient 
kernel 
[−1,  0,  1]  and  with  a  vertical  gradient  [−1,  0  1]

T   
and 

combining the results. An example of a gradient image 
is shown in Fig. 5b. 

 
 

Fig. 4  Examples of data used for training the SVM classifier 
All images are resized to 20 × 40 pixels for training purposes 

a–d Pedestrians 
e–h Non-pedestrians 

 

The resultant gradient image is divided into cells of 5 × 5 
pixels, as shown in Fig. 5c. The HOG feature is then 
computed for each cell by accumulating votes into bins for 
each orientation. Each bin effectively represents the 
‘strength’ of an edge through 9 orientations from 0° to 180° 
for a total of 9 histogram bins. 

When all of the histograms have been computed, a single 
feature vector descriptor is formed by concatenating all of 
the histograms. The resulting feature vector is normalised 

with L 
2
-norm [26]. The L 

2
-norm of an un-normalised 

vector containing histograms of a block (u) is 

Table 2  Parameters used in hog feature vector generation 

Parameter Value 

image height 40 pixels 
image width 20 pixels 
cell width 5 pixels 
cell height 5 pixels 
no. of orientations 9 (0°–180°) 
overlap 0.5 

normalisation  method L 
2-Hys 

 
 

 

 
division by 0. The value for v is clipped at 0.2 [26, 28]. 
This is referred to by Dalal and Triggs as L 

2
-Hys 

normalisation [17]. This results in a descriptor vector which 
describes a grey-scale ROI of 20 × 40 pixels. A HOG 
feature is generated for each 20 × 40 FIR image (an 
example of a HOG descriptor is shown in Fig. 5d ). A 
summary of the parameters used for HOG feature 
generation are shown in Table 2. 

 

 

3.2 Local binary patterns 
 

LBP were originally proposed as a method of texture 
classification by Ojala et al. [20]. The LBP technique has 
been applied to areas such as facial detection with visible 
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2 + e2 

spectrum cameras [21] and NIR  cameras  [22].  LBP 
features are determined for a ROI by traversing the 
ROI one pixel at a time with a structuring element, for 
example, Ojala et al. [20] used a structuring element of 
3 × 3 pixels. In essence, the LBP value for a structuring 
element is calculated by thresholding the outer pixels 

against the centre pixel of the structuring element (Fig. 
6b) and the resultant 8-bit binary number is then 
converted to an integer (Fig. 6c). Once the image has 
been traversed and integers have been computed for all 
pixels, a histogram is generated. The structuring element 
can be extended to use 

v = 

  

|| u | | 2
        

(3) differing radii, Ojala et al. [20] found that a larger number 
of  sampling  points  and  radii  provided  higher  detection 
rates in classifying textures in images with a resolution of 

where e is a small constant whose purpose is to prevent 256 × 256 pixels. 



  

 

 

 
 

 
 

Fig. 5  Images from the stages of generating a HOG feature vector 

a Pedestrian ROI, scaled to 20 × 40 pixels 
b Gradient image 
c ROI divided into cells of 5 × 5 pixels, resulting in 4 cells × 8 cells 
d HOG descriptor for the ROI showing the gradient orientation histograms in each cell 

 

SVM operates by calculating the optimal separating 
hyperplane between classes in higher dimensional space. In 
this paper, a SVM is used to classify ROIs identified during 
the previous stage as either pedestrian or non-pedestrian 
based on their HOG–LBP features. A radial basis function 
(RBF) has been used as a kernel (K ) for SVM classification 
in this paper 

 

K(x, y) = e−y||x−y|| 

 
4 Pedestrian tracking 

(5) 

 

 

Fig. 6  Images from the stages of generating a LBP feature vector 

a Pedestrian ROI, scaled to 20 × 40 pixels with 3 × 3 structuring element 

highlighted in red 
b Outer values of LBP 3 × 3 structure thresholded against centre value (206) 
c 8-bit binary number (14) generated from structuring element converted to 

decimal for storage in histogram bin 

 

 

This paper uses the following notation for LBP structures is 
LBPP,R, where P is the number of sampling points used and R 
is the radius of the structuring element. When a sampling 
point does not fall on integer co-ordinates, the pixel value 
at that point is bilinearly interpolated. The LBP label for the 
centre pixel (x, y) of the structuring element is denoted by 

Tracking of pedestrians between frames adds robustness to 
the system. Information acquired from previous frames can 
be used to search for previously detected pedestrians in the 
current frame, and for interpolation between frames. 
Tracking can also be used to predict the location of a 
pedestrian in a frame if classification temporarily fails 
because of partial or full occlusion of the pedestrian. 

A Kalman filter [31] has been used in this work to track 
pedestrians in sequential frames in this system. Kalman 
filters have been used previously in automotive applications 
such as pedestrian detection [12] and vehicle detection [32]. 
The equations that govern the Kalman filter are presented in 
[31]. The system specific entities for Kalman tracking are 
presented in this section. Targets are tracked in the system 
by using four parameters associated with the pedestrian 
bounding  box,  namely  x-position,  y-position,  width  and 

N =1 

LBPP,R(x, y) =      s(ni − nc)2
i
, s(x) = 

i=0 

  
1, x ≥ 

0 
 

 

0, x , 0 

(4) height, and these parameters are used to form a 
measurement vector (z). Predictions of the state vector (x̂ ) 
and state error covariance matrix (P

−
) are generated for a 

ROI at time k. The speed and direction of a pedestrian does 

To reduce the total number of bins generated by the LBP 
stage, uniform patterns are employed. In [20], the authors 
state that uniform patterns make up approximately 90% of 
textures when a 3 × 3 structuring element is used for LBP 
feature generation. A uniform pattern is achieved when the 
number of spatial transitions in the output is less than or 
equal to 2. Examples of uniform patterns are ‘00110000’ 
and ‘11110111’. The total number of uniform patterns that 
can be achieved with a LBP8,1 structuring element is 58. 

When calculating LBP patterns for an image, 58 histogram 
bins are used for the various uniform patterns and 1 extra 

2 



  

 

 

 

 

 

 

 

 

 

 

not change significantly between frames, assuming that 
the camera is travelling straight with constant speed 
[33], the state transition matrix A is an identity matrix. 
The role of A 
is to relate the state at the previous time step (k−1) to the 
current time step (k), in the absence of either a driving 

function or process noise. For the proposed system, A is 

 
1 0 0   0 1 0   0 0  

 0 1 0   0 0 1   0 0   
0 0 1   0 0 0   1 0  
 

0 0 0   1 0 0   0 1  

  
bin  is  used  for  storing  the  total  number  of  non-uniform 

A = 
 

0 0 0   0 1 0   0 0  (6)   
patterns within the image. The number of uniform patterns   0 0 0   0 0 1   0 0 

  

generated for larger structuring elements is scaled according 
 

 

to the number of sampling points used. 

 
3.3 HOG–LBP features 

When the HOG and LBP features have been calculated for the 
ROI, they are concatenated to form a single HOG–LBP 
feature vector. The fusion of HOG features with LBP 
features as training data for a SVM has been utilised for 

 

0 0 0   0 0 0   1 0  
  

0 0 0   0 0 0   0 1 

 

The resulting updated state vector (x̂ ) is 

 
xk−1 + Dxk−1  
 yk−1 + Dyk−1   
wk−1 + Dwk−1  

pedestrian detection in the visible spectrum where increased 
 

 
detection rates have been achieved compared with a SVM x̂ − = 

 
hk−1 + Dhk−1  (7) 

 

trained purely using HOG vectors [23]. 

 
3.4 SVM classifier 

A SVM classifier is used in conjunction with the combined 

k 
 

Dxk−1   

Dyk−1  
 

Dwk−1  

Dhk−1 

HOG–LBP feature vectors for classification of isolated 
ROIs. SVMs have been used in a range of fields including 
facial  recognition  [29]  and  gesture  recognition  [30].  An 

 



  

 

 

 

proposed system is 

 

 

H = 

 

 

 

(8) 

approximately  15 000  frames  of  captured  FIR  video,  the 
streams of FIR video are independent of the training database. 

The performance of the SVM classifier in this paper is 
presented  in  two  subsections:  subsection  (A)  focuses  on 
detection of pedestrians in FIR images which have been 
isolated from captured streams of FIR video and subsection 
(B) focuses on the performance of the classifier on streams 
of FIR footage. All of the data within the FIR streams is 

The measurement noise covariance matrix R of the Kalman 
filter determines the sensitivity of the tracker to updates. A 
high value of R results in smoother movement and less 
weighting on detections in the current frame, while a small 
value will result in a more responsive tracker and heavier 
weighting on the current measurements. However, a value 
too small can cause the tracker to become unstable. For the 
video data used in this paper (320 × 240 pixels, 25 Hz 
frame rate) an R matrix of 0.1I has been found to be 
suitable for ensuring the tracker is responsive, and also 
remained stable in the presence of noise caused  by 
variations in the road surface. For the proposed system R is 

 

independent of the data used to train the SVM classifier. 
 

5.1 Performance of classifier on FIR database 

A range of approaches have been used in the literature to 
quantify performance in IR pedestrian detection algorithms. 
A performance evaluation of pedestrian detection systems 
was presented in [34] which notes that receiver operating 
characteristics (ROC) curves are an effective tool for 
quantifying performance. Results are presented in the form 
of a detection rate with/without tracking and the number of 
false positives present. The detection rate is the proportion 
of frames in which a pedestrian is successfully detected (d ), 
out of the total number of frames in which they are present (n) 

R =   
 

(9)  
d 

Detection rate = (10) 
n 

 

The co-ordinates of each classified pedestrian are stored 
between frames, the previous frame’s co-ordinates are then 
compared with classified ROI in the current frame. If there 
is a low correlation between the current set of co-ordinates 
and the co-ordinates found within the previous  frame,  a 
new tracker object is defined. If there is a high degree of 
correlation between the current set of pedestrian position 
co-ordinates being analysed and co-ordinates found in the 
previous frame, this is noted and a counter is incremented 
to keep track of the number of times a pedestrian has been 
classified in a series of consecutive frames. If a ROI is 
classified in more than five consecutive frames, the system 
then creates a tracker object for the ROI and draws a 
bounding box around the ROI on the in-vehicle display. 
Tracking has been found to remove a large number of false 
positives from the system, as false positives tend to occur 
for only a short duration, (generally 1-2 consecutive 
frames). If a target goes undetected for more than ten 
frames then it is deemed to have moved beyond the camera 
field of view and its associated tracker object is discarded, 
this allows for regions to go undetected for a short period 
of time without discarding them. This method of tracking 
pedestrians allows for more robust system performance and 
has been shown to generate fewer false positives than a 
system that does not utilise tracking. 

 
5   Results and discussion 

The proposed system has been implemented in Matlab and 
executed on an Intel Core i7 860 processor with a clock 
frequency of 2.80 GHz at a rate of 3 frames per second. 
The performance of the system will be greatly improved 
through implementation on an embedded system. FIR video 
has been captured with an automotive grade FIR 
microbolometer sensor at a rate of 25 fps and a resolution 
of 320 × 240 pixels (QVGA). Video segments have been 
captured in urban, suburban and rural environments at 
speeds ranging from 0 to 100 km/h. The various classifiers 
were  tested  on  the  database  of  2000  FIR  images  and 

 

The detection with tracking rate is the proportion of frames 
where a pedestrian is successfully detected or tracked (t), 
out of the total number of frames in which a pedestrian 
appears (n) 

 
 t   

Detection with tracking rate = (11) 
n 

 

The recording and measuring of the number of false positives 
is an important factor in a pedestrian classification system. 
The false positive rate is a measure of how many regions 
the classifier falsely determines is a pedestrian ( f ) out of the 
total number of frames (n) 

 
f 

False positive rate = (12) 
n 

 

K-fold cross validation has been used to test the performance 
of the SVM when trained with each of the various feature 
vector sets. Cross-validation has been performed with K = 
10, which divided the database of images used for training 

 
 

Table 3 Confusion matrix displaying  detection  rates  for 
multiple LBP structuring elements 

 
1  0 0 0 0 0 0  0 
 0  1 0 0 0 0 0  0 
0  0 
 1 0 0 0 

0  0 

0 0 0 1 0 0 0   0 

 

 
0.1 0 0 0 

 0 0.1 0 0 

 
0

 0 0.1 0 

 

0 

0 0 0.1 

 

Structuring element  Predicted Class 

LBP8,1 pedestrian 
non-ped 

0.91 (TP) 
0.09 (FN) 

0.17 (FP) 
0.83 (TN) 

LBP16,2 pedestrian 
non-ped 

0.90 (TP) 
0.10 (FN) 

0.09 (FP) 
0.91 (TN) 

LBP24,3 pedestrian 
non-ped 

0.72 (TP) 
0.28 (FN) 

0.12 (FP) 
0.88 (TN) 

LBP8,1 + 16,2 pedestrian 
non-ped 

0.90 (TP) 
0.10 (FN) 

0.11 (FP) 
0.89 (TN) 

LBP8,1 + 24,3 pedestrian 
non-ped 

0.72 (TP) 
0.28 (FN) 

0.09 (FP) 
0.91 (TN) 

LBP16,2 + 24,3 pedestrian 
non-ped 

0.73 (TP) 
0.27 (FN) 

0.09 (FP) 
0.91 (TN) 

LBP8,1 + 16,2 + 24,3 

  

pedestrian 
non-ped 

0.76 (TP) 
0.24 (FN) 

0.08 (FP) 
0.92 (TN) 

 



  

 

 

 

Table 4  Confusion matrix for SVM pedestrian classifier trained 
with various feature vectors on database of FIR imagery 

 
 

Predicted Class 
Pedestrian Non-Ped 

 
 

HOG pedestrian 0.94 (TP) 0.02 (FP) 
non-ped 0.06 (FN) 0.98 (TN) 

LBP8,1 pedestrian 0.90 (TP) 0.16 (FP) 
non-ped 0.10 (FN) 0.84 (TN) 

HOG–LBP8,1 pedestrian 0.98 (TP) 0.01 (FP) 
non-ped 0.02 (FN) 0.99 (TN) 

HOG–LBP16,2 pedestrian 0.87 (TP) 0.01 (FP) 
non-ped 0.14 (FN) 0.99 (TN) 

 
 

True positive (TP), false positive (FP), true negative (TN) and 
false negative (FN) detection rates are all displayed 

 

 

into ten groups. Nine groups have been used to train the 
SVM and one group for testing, this process is repeated 
with different groups until every group has been classified. 
The resulting confusion  matrix displaying the metrics of 
each feature vector are presented in Table 4. Cross-
validation increases the time it takes to train the classifer 
but it ensures that each image is used for both training 
and testing. This gives a more detailed representation of 
classifier performance on unseen data. The ROC curve for 
each type of feature vector is presented in Fig. 7a, the 
upper left-hand corner of the curve is enlarged for clarity 
in Fig. 7b. The ROC curves presented are generated based 
on the performance of the classifier on the database of 
2000 images. 

The combination of multiple structuring elements has been 
shown to provide better detection rates for texture 
classification [20]; therefore a range of structuring elements 
have been used. The results of tests with detection with 
multiple structuring elements is presented in Table 3. These 
results show that combinations of different scales of LBP 
structuring elements yield no improvement in detection 
rates  in  this  application.  The  structuring  elements  which 

structuring element exceed that of the scaled image, that is, 
20 × 40 pixels. 

The confusion matrix for the SVM classifier is presented in 
Table 4. The operating point for the confusion matrix has 
been chosen at a detection rate of 0.98 and a false positive 
rate of 0.01 for the HOG–LBPP,R + SVM classifier. This 
point gave the best trade-off between detection rates and 
false positive rates. The SVM parameters that yielded this 
performance were a cost (C ) of 2048 and RBF kernel 
parameter of (γ) 10. 

The detection rates presented in this work illustrates that a 
SVM using a fusion of HOG and LBP feature vectors 
provides more accurate detection results in FIR  imagery 
than individual HOG or LBP with SVM. The true positive 
detection rate of 98% is a significant improvement over the 
HOG only based classifier which had a detection rate of 
94% and the LBP classifier which had a detection rate of 
90%. The false positive rate of the HOG–LBP classifier is 
1%; lower than the HOG only classifier rate of 2% and the 
LBP only classifier rate of 16%. These figures show that the 
combination of HOG and LBP feature vectors result  in 
more accurate pedestrian detection in automotive FIR 
imagery. 

 

 

5.2 Performance of classifier on FIR video 

The results from FIR video are presented in Table 5. The 
results on real-world FIR footage shows that HOG–LBP 
feature vectors yield significantly higher detection rates and 
lower false positive rates than just HOG or LBP trained 
classifiers alone. A large number of pedestrians are detected 
at close range and are classified correctly  with an  SVM 
trained with  HOG–LBP feature vectors. Examples of 
pedestrians   classified   with   all   three   feature   sets   are 

 

Table 5 Results of pedestrian classification on streams of fir 
footage 

yield the best results were LBP8,1  and LBP16,2. These are    
fused with HOG features to create HOG–LBP8,1 and HOG– 
LBP16,2 features to determine which arrangment yields the 
best detection rates in SVM training. The larger structuring 
element LBP24,3  does not perform as well as the smaller 

 Feature  Length  Detection rate  False positive rate  

HOG–LBP8,1 15 000 98.41 0.008 
structuring   elements   since   image   dimensions   of   the    

 
 

 
 

Fig. 7  ROC curves for various feature vectors 

a ROC curve containing results of cross-validation tests for HOG, LBP and HOG–LBP 

b Enlarged view of upper left portion of ROC curve 

HOG 15 000 94.6 0.017 

LBP8,1 15 000 91.6 0.14 

 



  

 

Institution 

 

 
 

Fig. 8  Output of SVM classifier trained with different feature vectors 

a–c HOG + SVM 

d–f LBP8,1 + SVM 

g–i HOG–LBP8,1 + SVM 
True positives are outlined in blue and false positives are outlined in red 

 

 
presented in Fig. 8. It is difficult to classify pedestrians that 
are a great distance from the camera [35], mainly because 
of the relatively low resolution of FIR cameras. Pedestrians 
also have very little textural information when they are 
situated far from the camera. 

 

 
5.3 Discussion of results 

 

A sample of  frames processed  using each feature  vector 
are shown in  Fig.  8:  the  HOG-SVM  output  is  shown 
in Figs. 8a–c. The LBP8,1 + SVM output is shown  in 
Figs.  8d–f,  the   HOG–LBP8,1 + SVM   output   is   shown 
in Figs. 8g–i. 

All of the features examined within this paper function 
quite well at close to medium ranges (10–50 m) in 
environments where there is a small number of other hot 
objects and there is a significant contrast between the 
pedestrian and the surrounding environment. However, if 
there are a large number of bright objects in the centre of 
the image, such as in a busy urban environment containing 
a large number of windows on heated dwellings and other 
vehicles on or near the road, the HOG + SVM and LBP8,1 

+ SVM detection rates can decrease. Fig. 8e shows a false 

 
positive caused by heat from the window of an adjacent 
building. 

A number of IR pedestrian detection algorithms are 
presented and compared in Table 6. The HOG–LBP method 
of classifying pedestrians in FIR imagery presented in this 
paper achieves higher detection rates than other previously 
published methods in this table. The closest detection rate 
to the HOG–LBP rate of 98% achieved in this work is 95% 
[26, 38]. HOG–LBP, with a monocular IR camera even out-
performs some stereo IR configurations [39]. Using a 
single camera results in a system that is cheaper to 
manufacture, easier to install and calibrate and, consumes 
less power. 

The HOG–LBP trained SVM used in this pedestrian 
detection system demonstrates the ability to detect 
pedestrians across a wide range of distances from very close 
to the vehicle, to beyond 75 m (where a pedestrian is little 
more than a few pixels high). Early detection of pedestrians 
gives the driver more time to react and adjust the path of 
the vehicle to avoid collision with an identified pedestrian. 
Failure to detect pedestrians is most commonly caused by 
occlusion or close proximity to other bright objects in the 
surrounding environment. The greatest improvement was 
observed in the tests performed with video streams using 



  

 

 

 

Table 6    Summary of pedestrian detection methods used in IR spectrum 
 

Authors Sensor 
config. 

ROI isolation Object classification Tracking Detection 
rate, % 

Bertozzi et al. stereo dynamic binary threshold + Silhouette matching – 90 
[36]  disparity information    
Xu et al. [12] mono dynamic threshold SVM Kalman, 95 

 

Bertozzi et al. 
 

stereo 
 

– 
 

histogram of oriented gradients + 
Mean Shift 

– 
 

91 
[37]   SVM   
Ge et al. mono dynamic binary thresholding histogram of oriented gradients + Kalman 93 
(2009) [33] 
O’Malley et al. 

 

mono 
 

seeded region growing 
Haar-Based AdaBoost 

histogram of oriented gradients + 
 

Kalman 
 

95 
[26] 
Sun et al. [38] 

 

mono 
 

SUSAN 
SVM 

histogram of oriented gradients + 
 

– 
 

95 

   SVM   
Hurney et al. mono seeded region growing + (histogram of oriented greadients + Kalman 98 

  distance estimation filtering local binary patterns) + SVM   

 

the HOG–LBP trained classifier. The number of false 
positives encountered by the system was much lower in 
comparison with the HOG only trained classifier and LBP 
only trained classifier. 

 
6 Summary and conclusion 

This paper has presented a novel method of classifying 
pedestrians in FIR imagery using HOG–LBP feature vectors 
to train a SVM. Pedestrians are first isolated from the 
background scenery using a morphological  closing 
operation to remove clothing distortion present in the 
image. Seeded region growing is then used to grow seed 
regions within the image. This is performed by using binary 
thresholds of lowering intensities. When seeds reach a set 
of geometric criteria their co-ordinates are examined and 
further filtered based on their location and size within the 
frame. The regions that satisfy these requirements are saved 
and used to segment the ROI for classification. HOG and 
LBP features are then calculated for each segmented region 
and are concatenated to form a single HOG–LBP feature 
vector. The feature is then passed to a SVM which has been 
trained with a database of 2000 pedestrian and non-pedestrian 
images and is classified as either pedestrian or non-pedestrian. 
If an ROI has been classified as a pedestrian in multiple 
consecutive frames, it is tracked with a Kalman filter. The 
location of the ROI can then be estimated in frames where 
detection may have failed because of occlusion of the 
pedestrian or a false classification by the SVM. 

The SVM trained with HOG–LBP features achieves higher 
detection rates than previous literature in the area which 
utilised exclusively HOG or LBP feature vectors to train a 
SVM classifier for pedestrian classification in FIR imagery. 
The HOG–LBP classifier achieves a true positive detection 
rate of 98% which is an improvement of 4% on the 
classifier trained with HOG features alone (94% TP) and an 
improvement of 7% on a classifier trained with LBP 
features alone (91% TP). The HOG–LBP trained SVM also 
achieved a lower false positive rate. The detection rate of 
the HOG–LBP classifier is also an  improvement  on 
previous literature which achieved a  maximum  detection 
rate of 95% [12, 26, 38]. The combination of this improved 
pedestrian detection system with more stringent driver 
testing, road infrastructure and policing could significantly 
reduce the number of road fatalities that occur during the 
hours of darkness resulting in a much safer road 
environment for pedestrians. 

Work is currently underway to implement the proposed 
algorithm on an embedded hardware platform to achieve 
real-time performance. 
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