
ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

130

All Rights Reserved © 2016 IJARBEST

A Performance Model for the Measurement between

Web Service Framework and Web Application

Venkatesh.G
1

G.Uma Mahesh
2
 K.K.Baseer

3

1
M.Tech,

2,3
Assistant Professor,

Department of IT, Department of IT,

Sree Vidyanikethan Engineering College, Sree Vidyanikethan Engineering College,

Tirupati, India. Tirupati, India.

venkateshg.559@gmail.com kkbasheer.ap@gmail.com

Abstract— Web services provide a true platform and language independent distributed communication by building all the related

standards to XML. The interface description language (WSDL), the communication protocol (SOAP), and the middleware

extensions of SOAP, called WS-* protocols, are all based on XML format. The major benefit of using XML is platform

independence. Moreover, XML messages have a large communication overhead compared to binary distributed communications,

such as RMI and CORBA implemented with java. In previous works, the issue is addressed by comparing the RMI and CORBA

in terms of features, ease of development, and performance and the results shows that CORBA is slightly slower than RMI. In

proposed work, the issue is solved with the help of web services, where it uses XML for describing the service interface, message

exchange and the WS-* protocols that provide addressing, reliable messaging and security. Therefore, it is important to know how

to design the interface of a web service to minimize the communication overhead. This issue is resolved by proposing a

performance model with which the response time overhead of web services with arbitrary interfaces can be predicted. The

coefficients of the model are calculated with simple measurements for the given dataset. The proposed work is applied on the

train schedule application and measures the response time overhead. The result shows that, the measurement between a web

application and web service framework and also gives a detailed description of the performance model. The limitation of

proposed work is, it generates only in XML format rather than the other formats such as Plain text, HTML and JSON. In future,

an extension for the proposed model is develop using RESTful web service which can supports different formats.

Index Terms— Performance model,RESTful Web Services, SOAP,Web services,WSDL,WS-* protocols,UDDI XML.

1. INTRODUCTION

Services are intended to be independent building blocks that

collectively represent an application environment. Services have a

number of unique characteristics that allow them to participate as

part of a service-oriented architecture (SOA). An SOA is a design

model with a deeply rooted concept of encapsulating application

logic within services that interact via a common communications

protocol. When Web services are used to establish this

communications framework, they basically represent a

Web‐based implementation of an SOA.

 The most widely accepted and successful type of service is

the XML Web service. From here on referred to as Web service

or, simply, service. This type of service has two fundamental

requirements: 1) it communicates via Internet protocols i.e most

commonly HTTP. 2) It sends and receives data formatted as XML

documents. This XML‐based messaging format established a

transmission framework for inter‐application (or inter‐service)

communication via HTTP. SOAP provided an attractive

alternative to traditional proprietary protocols, such as CORBA

and DCOM.

 Web services describes a standardized way of integrating

Web based applications using the XML,SOAP, WSDL and UDDI

open standards over an Internet protocol backbone. XML is used

to tag the data, SOAP is used to transfer the data, WSDL is used

for describing the services available and UDDI is used for listing

what services are available. It is used primarily as a means for

businesses to communicate with each other and with clients. Web

services allow organizations to communicate data without

intimate knowledge of each other's IT systems behind the

firewall. Unlike traditional client/server models, such as a Web

server/Web page system, Web services do not provide the user

with a GUI. Web services instead share business logic, data and

processes through a programmatic interface across a network.

 The applications interface, not the users. Developers can

then add the Web service to a GUI such as a Web page or an

executable program to offer specific functionality to users. Web

services allow different applications from different sources to

communicate with each other without time consuming custom

coding, and because all communication is in XML, Web services

are not tied to any one operating system or programming

language. For example, Java can talk with .Net, Windows

applications can talk with UNIX applications.

 Web services exchange SOAP XML messages, thus they

provide true platform and language independent distributed

communication. However ,this interoperability come at a price:

SOAP XML messages burden the communication with a

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

131

All Rights Reserved © 2016 IJARBEST

significant serialization and deserialization overhead which can

even be comparable with the execution time of the service’s
application logic itself. This burdens the communication with a

large response time overhead compared to binary distributed

communications like CORBA or RMI. Therefore, it is important

to know how to design the interface of a web service so we can

minimize the communication overhead.

When the interface of a web service is being designed, it is

important to find the right granularity for the parameters, i.e., the

most reusable interface with the best response times. To

determine the best response times, it is essential to have the

capability to predict the estimated response time based on the

interface and on its expected usage of the service. This problem

inspired us to examine the response time overhead of the various

web service frameworks implementing the web service stack, and

to give a performance model equipped with performance

prediction capability for web services.
A dataset is used to measure the response time overhead

of web services. The dataset cover the most commonly used

primitive types, their combinations into arrays and structured

types and even the most widespread WS-*protocols including

WS-ReliableMessaging, WS-Security and WS-

SecureConversation.

A dataset is implemented for the web service frameworks and

also made performance measurement. Our measurement show

that the web service frameworks have the same performance

characteristics therefore, it is possible to make a common

performance model which can be used to approximate the

measurement results and even be used to make predictions on

other services with other interfaces.

Proposed a performance model with which the response time

overhead of web services with arbitrary interfaces can be

predicted if the coefficients of the model are calculated from

some simple measurement for the given dataset. The

measurements results for the web service frameworks and also

give a detailed description of the performance model.

2. RELATED WORK

This section summarizes the related works for a performance

prediction of web services. However, to my knowledge, there has

not yet been any propositions of predicting the performance of

web services based on their interface descriptions.

M. Novakouski et. al. [1] examined how different

security mechanisms in web services influence the response time

and other resource usages. They identified the key tradeoffs

between different security options and their results were that

security mechanisms for web services have a considerable impact

on the response time. They only tested the Apache Axis2

Rampart framework and no other frameworks, and they

concluded that the results rely heavily on the execution

environment. My proposition takes into account this result, and

provides a solution that can be customized to specific

environments.

D. Rodrigues et. al. [2] also analyzed the security mechanisms

for web services. They also tried different algorithms with

different configurations. They even called the services from

multiple clients, which resulted in expected performance

degradation. They also used the Apache Axis2 Rampart

framework, and their results are similar to the work of M.

Novakousky et. al.

M. B. Juric et. al. [3] Compared web services security with

other distributed communication techniques, such as RMI and

RMI over SSL. Their conclusion is the same as in the previous

two related works: WS-Security has a huge overhead. Earlier

they also compared the performance of CORBA and RMI in [4].

Although they identified the factors contributing to the response

time overhead, they did not provide a performance model for the

communication that could be used for performance prediction.

S. Shirasuna et. al. [5] compared security mechanisms for grid

services. Their results are similar: SSL is the fastest, although, it

does not provide end-to-end security. WS-Security is faster than

WS-SecureConversation for one-time invocations. WS-

SecureConversation has better response times for multiple calls,

however, it has a huge disadvantage, too, since the server has to

hold the connection status information for each client, and this

can lead to serious scalability issues if the number of clients

increases.

R. A. van Engelen and W. Zhang et. al. [6] Evaluated some

optimizations regarding the security algorithms used in web

services security using the gSOAP framework. They provided

some guidelines, how better performance can be achieved. They

made measurements also for large messages. However they did

not provide a performance model.

L. Cheung et. al. [7] Proposed a framework based on queuing

models for performance prediction of third party web services.

Their work is similar to mine, since it builds on measuring the

response time of the target service including the communication

overhead and the actual time of the execution of the server side

logic. However, my aim is to predict the communication

overhead based on the interface of an arbitrary service, even if the

service is not yet implemented.

Y. Leu et. al. [8] Developed a performance model also based

on queuing models for analyzing and predicting the performance

of service applications composed on a COTS ESB platform. Their

work focuses on ESB operations, such as routing and

composition, and not on predicting performance based on the

interface of the services.

H. H. Liu and P. V. Crain et. al. [9] proposed a performance

model for web service implementations. They built a queuing

model for the client side, the network, the web service and for the

database behind the service. Their observation is that most of the

response time comes from the serialization of the SOAP

messages. Therefore, it is important to be able to measure and

predict this overhead more accurately, and my work focuses on

this problem.

S. Oh and G. C. Fox et. al. [10] also identified this problem,

and they proposed their own framework called Handheld Flexible

Representation (HHFR) to be used in mobile computing instead

of SOAP. They also made measurements to prove that their

solution out performs SOAP.

M.Tian et. al. [11]Also examined mobile web services and

suggested a solution in which the clients can ask the server to

compress the SOAP messages. They showed that compression is

useful for poorly connected clients with resource-constraint

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

132

All Rights Reserved © 2016 IJARBEST

devices despite the CPU time required for decompressing the

responses. However, if standard SOAP communication is used in

mobile environments, it is important to know, how the clients and

services will perform. My proposition can also be generalized to

this area.

G. Imre et. al. [12] Developed a cost model for XML

serialization in Java and .NET. XML serialization is the heart of

SOAP message serialization, therefore, it is an important

contribution in this area, although, they only examined three

primitive types (string, int and double). My measurements show

that other types and the WS-* protocols introduce other
contributions to the SOAP message serialization and the response

time overhead cannot be predicted merely based on the XML

serialization overhead.

Have not found any related work that gives such an extensive

examination of the response time overhead of web services as

mine. My aim is to be able to predict the response time

overhead of a web service based on its interface if the

characteristics of the hosting server is known. These

characteristics can be measured by the services and clients and

introduce services and clients and also the performance model

which can be used for predicting the response time overhead of

web services based on their interfaces.

3. WEB SERVICE STACK IMPLEMENTATION

ARCHITECTURE

The most widely implemented WS-* protocols are WS-

Addressing, WS-Reliable Messaging, WS-Security and WS-

SecureConversation.The Microsoft .NET Framework, the

GlassFish server, the Oracle WebLogic server, the IBM

WebSphere server and the Apache CXF framework support

most of them. The difference between these frameworks is in the

configuration of these protocols. There are many other WS-*

protocols. However, the most widely used SOA products do not

implement them, therefore, they are also omitted from this paper.

Fig. 1. Typical architecture of the web service stack

implementations.[16]

Fig. 1 shows the general architecture of the web service stack

implementations. The Windows Communication Foundation

(WCF) [13] stack (part of the Microsoft.NET framework) and the

Metro [14] stack (the reference implementation of JAX- WS)

follow this structure, and other framework implementations can

also be modeled this way.

 The network is used for sending bytes from one end to the

other. The network protocol for web services is usually HTTP,

but it can be replaced with other protocols.

3.1 Transport layer

The transport layer is responsible for handling the network

protocol. On the service side it waits for client connections, on the

client side it connects to services. It also transfers bytes between

the two participants.

3.2 Encoding Layer

The encoding layer translates between bytes and a framework

specific message object representation, i.e. it is responsible for

serialization and deserialization (e.g. into SOAP, with or

without MTOM). The transport and encoding layers are always

mandatory.

3.3 Protocol Layer

 The protocol layers are optional, and they implement the

various WS-* standards (e.g. WS-Reliable Messaging, WS-

Security, etc.). The protocol layers usually produce bootstrap

messages or insert additional headers into service invocation

messages. For example, the WS-ReliableMessaging protocol

includes bootstrap messages for initiating and terminating the

reliable session. WS-ReliableMessaging also extends the

messages with additional SOAP headers containing

acknowledgement information about the messages already

received by the parties. WS-SecureConversation also has

bootstrap messages for establishing the security context and the

session key. WS-Security and WS-SecureConversation have

additional security headers in the messages for timestamps, digital

signatures and encrypted keys.

This section enumerates the most important web service stack

implementations in Java and in .NET. Table I shows the exact

versions of the implementations which are examined and these

are the versions which are supported by the generator of the web

service framework.

 The descriptions in this section focus on the configuration

properties of the web service frameworks, since configuring the

WS-* protocols are usually the most challenging part of the

development. The WS-Security protocols have the most

Client

Service

Protocols

(WS-RM, WS-S, etc.)

Protocols

(WS-RM, WS-S, etc.)

Encoding

(SOAP, MTOM)

Encoding

(SOAP, MTOM)

Transport

(HTTP, JMS, etc.)

Transport

(HTTP, JMS, etc.)

Network

Vendor Framework Server Dev.Envi

ronment

API Configuratio

n

Microsoft WCF

.NET4.5

IIS 8.5 Visual

Studio

2013

WCF Web.config/

App.Config

Oracle Metro 2.3 GlassFi

sh 4.0

Netbeans

8.0

JAX-

WS

WS-Policy

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

133

All Rights Reserved © 2016 IJARBEST

complex configuration, because the WS-Policy standards do not

specify how X.509 certificates can be set for the services and

for the clients, and so the different software vendors came up

with different ways to configure these certificates.

 This section also shows that even if standard WS-Policy

assertions are used, the different configuration solutions of the

different software vendors may result in interoperability issues.

In addition, the configuration solutions can be very complex and

hard to maintain. These are clear indicators that an easy to use

platform independent domain specific language with the

appropriate level of abstraction is required for the configuration

of the various WS-* protocols.

TABLE I. WEB SERVICE STACK IMPLEMENTATIONS

4. OPEN SOURCE (ORACLE):METRO

The Metro open source project was originally started by Sun

Microsystems as part of the GlassFish server. Since the

acquisition of Sun Microsystems by Oracle the project is funded

by the latter. Metro provides a reference implementation for the

Java API for XML-based Web Services (JAX-WS) specification

(JSR-224)[15], which defines how Java classes can be mapped

to web services with the use of Java metadata annotations

including @WebService and @WebMethod. These annotations

play similar roles to the WCF attributes. In fact, WCF and JAX-

WS have a similar API.

Although the JAX-WS specification is like a standard in

the Java world, it is restricted to simple web services and WS-*

protocols such as WS-Reliable Messaging and WS-Security are

not covered by it. Hence, the Java software vendors offer

different solutions to configure these protocols.

The Web Services Interoperability Technology (WSIT) is

the part of the Metro framework which provides implementation

for the WS-* protocols. Configuration of the WS-* protocols is

done by including standard WS-Policy assertions in the WSDL.

X.509 certificates have to be in Java-specific JKS keystores, and

these keystores can be specified by including custom WSIT

policy assertions (KeyStore, TrustStore) in the WSDL.

Metro applications can be easily created using the

Netbeans development environment, since it provides a graphical

configuration interface for the WS-* protocols. Of course, other

development environments can also be used, but they provide no

such convenience.

5. OVERVIEW OF THE PERFORMANCE

PREDICTION METHOD

The major performance overhead of web services results from

the use of XML for serializing messages. The WS-* protocols

extend simple SOAP messages with additional headers,

bootstrap messages, and even XML encryption and digital

signatures can burden the communication further. In this paper,

proposed a performance model for web services in order to be

able to predict the response time overhead of web service calls for

services with arbitrary interfaces. The coefficients of the

performance model have to be calculated in advance so that the

performance model can be used for prediction.

The proposed method is used to calculate these coefficients,

see Fig. 2.This method requires the execution of some

measurements between the various frameworks by using a

predefined set of services and clients. These are called reference

services and reference clients. The interface of the reference

services defines operations, where the input and output

parameters are arrays of structures containing fields of various

types. These types are the most common primitive types used in

programming languages. The reference services differ only in the

enabled WS-* protocols. All the reference services and all their

respective clients have to be implemented in every web service

framework. Then all the clients have to call their respective

services, even between different frameworks, and the response

times have to be measured. The measurements have to be

performed with different array lengths and with different number

of calls.
My measurements show that different environments have the

same characteristics: the response time is in linear correlation
with the array length and also with the number of calls.

Fig. 2. Performance prediction process overview

Hence, a common performance model can be developed for the

different environments. If this performance model is used, the

environments only differ in the coefficients of the model. These

coefficients can be calculated from the measurements performed

between the reference clients and reference services.

The response time overhead of a service with an

arbitrary interface can be predicated based on the model if the

Client

(Web

Application1)

Client

(Web

Application n)

Service

(Framework 1)

Service

(Framework n)

Measurement

Calculation

Performance

model

coefficients
Prediction

Interface of a

new service
Runtime

characteristics of the

new service

Performance

prediction for the

new service

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

134

All Rights Reserved © 2016 IJARBEST

model’s coefficients and the runtime characteristics of the service

are known (e.g. the number of calls, the lengths of the arrays).

6. MEASUREMENT RESULTS

The measurements were performed on a single computer using

local access between the clients and the services. The computer

had the following configuration:

 Intel Pentium Dual-Core 2.30GHz CPU

 4GB RAM

 Microsoft Windows 7 Professional SP1 64-bit

 Oracle JDK7(1.7.0) 64-bit

 GlassFish Server 4.0 with Metro 2.3

 Netbeans IDE 8.0

In order to measure the combined effect of the factors of the

different layers of the web service stack implementations

introduced in section 3, a number of service and client have to be

defined and implemented.

The most common basic types in programming languages

and in XML are: byte, boolean, int, long, float, double, string,

date, time and TimeSpan. Restrictions can also be defined in

XML Schema for these types, however, apart from enumerations

these restrictions are not supported by the JAX-WS API. XML

Schema includes other data types, but they are only restrictions or

subsets of the types listed here. Therefore, we can assume that

the listed types are the basic building blocks of composite types.

Composite types are usually either arrays or structured types. The

following SOAL code describes the interface of the service that

can be used for performance measurements:

struct TrainSchedule {

string Name;

string Track;

string StartStation;

string EndStation;

 long Distance;

DateTime OriginalSchedule;

DateTime ExpectedSchedule;

string[] Services;

}

interface IWsPerfMav {

TrainSchedule[] GetTrainSchedule

(DateTime fromTime, DateTime toTime);

}

Here for implementation I am using JAX-WS with SOAP

Protocol supporting and calculating response time of input

parameter TIMESTAMP and STRING.

The document/wrapped SOAP encoding style was used to

implement the service, since the JAX-WS [15] implementations

use this style by default. The types were mapped to XSD. The

service and the client were generated using the SOA modeling

framework [16], [17]. The dataset are sufficient for measuring the

overhead of the transport and encoding layers. However, for the

protocol layers, the various WS-* standards had to be enabled.

The Service was implemented as part of a single web

application, and was deployed to the respective application

servers (GlassFish for Metro). Server was using their default

settings except for the following:

 On GlassFish, the monitoring of web services was

turned off so that it would not affect the performance.

In addition, the virtual memory of the JVM was

increased to 8 GB, since the deployment of the service

required 1.5 GB of memory, and the memory was still

leaking, so the server had to be restarted daily.

Since the overhead of web service calls results mainly from the

XML serialization, the selected XML parser may have an impact

on the observed response times. This is especially important in

the Java world, where the selected JAXP (Java API for XML

Processing) API may have multiple implementations. The default

XML parser for the GlassFish server is a StAX (Streaming API

for XML) implementation, called SJSXP (Sun Java Streaming

XML Parser). However, as my measurements show, the overhead

of web service calls relies also on other factors (e.g. data types),

too. StAX is a low level parser, and it does not deal with data

types. Data types are handled by the higher level data binding

performed by JAXB (Java Architecture for XML Binding).

Therefore, my goal is not to compare the various parsers with

each other. My aim is to find a model based on which these XML

parsers can be evaluated against each other.

The client was implemented as simple standalone

console applications. The measurements were made from the

client side with timers of at least millisecond precision

(System.nanoTime in Java).

 Fig.3 shows the general diagram for the SOAP Request and

Response between service requestor and service provider.

 UDDI

 WSDL WSDL

 SOAP

 SOAP

Service

Requestor

Service

Registry

Service

Provider XML

Response

Message

XML

Request

Message

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

135

All Rights Reserved © 2016 IJARBEST

Fig. 3. SOAP messaging between service requestor and provider

Fig. 4. SOAP Request and SOAP Response between Client

application and service application

Web services does not provide APIs, it provide specifications that

means set of rules and guidelines how I will communicate with

two web applications.

To interact with two interoperable web applications or

two web service frameworks or web application and web service

framework either it may be developed in two different

programming languages or same programming language web

applications.

Web services provide six components:

 WSDL

 UDDI

 SKELETON

 STUB

 SOAP Protocol

 HTTP Protocol

Out of these six components UDDI is optional and remaining all

are mandatory.

Fig. 4 shows the Service application must be developed with web

services web application that is developed in different

programming language like java, .NET.

 Client application may be a standalone application or web

application that is developed in different programming language

like java, .NET.

 To interact with client (standalone web application developed

in java) and service application (web services web application

developed in java), i have followed these steps:

Client application want to invoke add() method in CalService.java

that is in service application. Client application should know

about name of the class ,method name, parameter types, return

types then only client application can invoke add() method from

that calservice.java that is in service application

Step 1: Service application need to share that service class details

in the form of one format, that format should be understandable

by the client application (that may be developed in java,

.NET).service application will share that information in the form

of XML.This XML file contains the name of the class, method

name, parameter types and return types. This information will

share to the client application who want to invoke this add ()

method in CalService.java that is service application.

This XML file should be understood by different

programming languages like java, .NET. This XML file is known

as WSDL File (web services description language).WSDL file

describes about our service class that is name of the class, method

name, parameter types and return types, in addition to that it will

have URL i.e Endpoint URL, Endpoint URL means the location

where our services are running, Endpoint URL is also stored in

WSDL file. This information is enough for the client application

to invoke service application.

WSDL file will be automatically generated by the

WSDL generation tool. WSDL file is used by the client

application to know about the service application details.

Step 2: Service application will share WSDL file to client

application with the help of UDDI Registry Software. UDDI

Registry Software will store WSDL file with some unique name,

that unique name will share to the client application.

Step 3: Client application will send the location of the UDDI

Registry Software. It will receive WSDL file i.e client application

will interact with UDDI Registry Software by sending unique

name and with that unique name client application will get the

WSDL file.

Step 4: Client application will get the WSDL file.

Step 5: Using WSDL file, client application will be generated

some classes called STUBS or Proxies. i.e how client application

will generate stubs means by using stub generation tool. If client

application is developed in java programming language then that

STUBS must be a java programming language or if client

application is developed in .NET programming language that

STUBS must be a .NET programming language .whatever the

methods are available in CalService.java that is in Service

application, the same methods are available in STUBS but the

implementation is different in STUBS as well as CalService.java

that is in Service application.

Step 6: Client application will create STUB Object with dot (.) of

the method and results will be stored. i.e res=StubObject.add();

The method call(res=StubObject.add();) is going to STUBS ,now

the STUBS is having method details like name of the class,

method name, parameter types and return types.

Step 7: STUBS will prepare XML file and store that details in the

form of XML file, this XML file is known as SOAP Request.

Now the SOAP XML Request will have name of the method,

parameter values and parameter types. i.e SOAP Request is going

to send to the service application, may be service application is

developed in different programming language like java,.NET and

service application need to understand the method that why it will

store these details in SOAP XML Request. STUBS use some set

of predefined tags to prepare the XML file. These predefined tags

are called as SOAP Tags. So STUBS uses SOAP tags and prepare

a SOAP Request.

Step 8: SOAP Request will send to service application with the

help of HTTP Protocol, now it is having name of the method,

parameter values and parameter types.

Step 9: SOAP Request is receiving to the server.

Step 10: Now the server will handover SOAP Request to the

SKELETON, SKELETON is a predefined class. If Service

application is developed in java programming language then

SKELETON should be a java class or Service application is

developed in .NET programming language then SKELETON

should be a .Net class. SKELETON will take SOAP Request and

read the XML file to get the method name, parameter values, and

parameter types.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

136

All Rights Reserved © 2016 IJARBEST

Step 11: SKELETON will invoke the client application requested

method details by passing Parameter values i.e (add (20, 20)) and

need to invoke a method i.e (add (20, 20)) on CalService.java that

is in service application.

Step 12: SKELETON will get return value i.e (40) and that value

need to send to the client application.

Step13: SKELETON will prepare one XML file that XML file is

known as a SOAP Response. In this SOAP Response it will store

the service application returned value i.e (40).SOAP Response is

an XML file, so it can be understandable and read to any

programming language like java,.NET. SKELETON uses some

set of predefined tags from the SOAP to prepare the SOAP

Response .SOAP Response contain the SOAP Tags

Step 14: The SOAP Response is available at the service

application side and sending the SOAP Response to the client

application with the help of HTTP Protocol.

Step 15: Now the SOAP Response is available at the client

application side which contains the returned value.i.e (40).and

returned value is read by the STUBS. This SOAP Response will

read the STUBS and STUBS will get the return value i.e (40)

Step 16: STUBS will get the return value i.e (40) and that

returned value is hand over to the Client application.

On the service side SKELETON (predefined class) and

WSDL Generation tool (predefined class) is mandatory and it will

be provided by the programming language i.e java means Java

API and.NET means .NET API.on the client side STUBS

Generation tool (predefined class) is mandatory and it will be

provided by the programming language i.e java means Java API

and.NET means .NET API.

SOAP is a Protocol and it is used for messaging

(messaging protocol) or communication. It is having some set of

predefined tags, with that SOAP tags, STUBS will prepare SOAP

Request (XML) file and SKELETON will prepare SOAP

Response (XML) file.

SKELETON will read the method details and invoke the same

method at the actual service application, get the returned value

and prepare the XML file in that XML file the returned value will

be stored. This XML file is known as SOAP Response.

STUBS will receive the method call from the client

application, and store the method details in the XML file (SOAP

Request) and it receives the returned value from the SOAP

Response, SOAP Response will read the STUBS, STUBS will get

the returned value and that returned value is handover to the

Client application.

After executing the client standalone application and service

web application, the following results will be generated.

Fig. 5. Home page of the web service performance model

Fig. 6. Uploading dataset on the web service performance model

Fig. 7. Datewise search on the web service performance model

Fig. 8. Name wise search on the web service performance model

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

137

All Rights Reserved © 2016 IJARBEST

Fig. 9. Based on search datewise and name ,the Response time on

web service performance model

Fig. 10. Response time chart for protocols

SOAP11,SOAP12,WS-A,WS-RM,WS S,WS-SC

Fig. 11. Response time chart for protocols

SOAP11,SOAP12,WS-A,WS-RM,WS S,WS-SC

The Fig. 10 and 11 summaries the results for different protocols

likeSOAP11,SOAP12,WS-Adressing,WS-Reliable Messaging

does not effect the response time for different data types ,but WS-

S,WS-SC effect the response time and also executing in two

different environments then we got same results.

Fig. 12. Overall flow of the Web Service performance model

TABLE II. MEASURED AND CALCULATED VALUES FOR WEB

SERVICE FRAMEWORK (WEB APPLICATION) AND STANDALONE

APPLICATION.

Client Service Protocols Calculated Measured

Standalone

Application

Metro

(Web

Application)

SOAP11

SOAP12

WS-A

WS-RM

WS-S

WS-SC

0.79

0.89

0.91

2.95

14.34

6.35

0.85

0.75

0.56

1.45

13.65

5.15

Metro

 (Web

Application)

Standalone

Application

SOAP11

SOAP12

WS-A

WS-RM

WS-S

WS-SC

0.45

0.75

0.96

2.45

13.34

8.35

0.55

0.95

0.91

1.95

12.23

7.65

Future Work:

Using RESTful

Web Services

Result: Response time chart based

on Date and Name (Graph)

Search: Date and

Time wise
Search:

Name wise

CORBA and RMI

Issue: Large communication

overhead by using CORBA and RMI

Solution: With the

help of Web Services

Web Services to minimize the

communication head

Issue: Designing the service

interface of the web service

Solution: proposed a

Performance Model

Applied on Train

Schedule Application
Input:
Dataset

Web Services Non-Web Services

Two Types of Web Services

Service Oriented

Architecture

(SOA)

RESTful Web Services SOAP Web Services

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

 International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

 Vol. 2, Special Issue 13, April 2016

138

All Rights Reserved © 2016 IJARBEST

7. CONCLUSION

Web services have a high communication overhead. If strict QoS

requirements have to be met, it is useful to have a design time

prediction capability about this communication overhead to be

able to find the right granularity of the service interface. This

challenge is solved by the proposed performance prediction

framework for web services. The framework can be applied to a

wider range of distributed systems, and not only for web services.

Component systems, RESTful web services and future distributed

communication technologies can be examined.

In the future we are planning to measure the

performance of RESTful web services, although RESTful

services may use other serialization methods (e.g., JSON) instead

of XML and so they require other considerations.

REFERENCES

[1] M. Novakouski, S. Simanta, G. Peterson, E. Morris, and G.

Lewis. “Performance Analysis of WS-Security Mechanisms in

SOAP-Based Web Services,”Nov. 2010.

[2] D. Rodrigues, J. C. Estrella, and K. R. L. J. C. Branco,

“Analysis of security and performance aspects in service-

oriented architectures,” Int. J. Security Appl., vol. 5, no. 1, pp.

13–30, Jan. 2011.

[3] M. B. Juric, I. Rozman, B. Brumen, M. Colnaric, and M.

Hericko, “Comparison of performance of web services, WS-

security, RMI, and RMI-SSL,” J. Syst. Softw., vol. 79, no. 5, pp.

689–700, May. 2006.

[4] M. B. Juric, I. Rozman, and M. Hericko.”Performance

comparison of CORBA and RMI,” Inform. Softw. Technol.

42(13), pp. 915–933,May. 2000.

[5] S. Shirasuna, A. Slominski, L. Fang, and D. Gannon,

“Performance comparison of security mechanisms for grid

services,” in Proc. 5th IEEE/ACM Int. Workshop Grid

Comput., pp.360–364,2004.

[6] R. A. van Engelen and W. Zhang, “An overview and evaluation

of web services security performance optimizations,” in Proc.

IEEE Int. Conf. Web Serv., pp. 137–144,2008.

[7] L. Cheung, L. Golubchik, and F. Sha, “A study of web services

performance prediction: A client’s perspective,” in Proc. IEEE

19th Annu. Int. Symp. Model., Anal., Simulation Comput.

Telecommun.Syst., pp. 75–84,2011.

[8] Y. Liu, I. Gorton, and L. Zhu, “Performance prediction of

serviceoriented applications based on an enterprise service bus,”

in Proc. 31st Annu. Int. Comput. Softw. Appl. Conf. - Vol.

01,pp. 327–334,2007.

[9] H. H. Liu and P. V. Crain.”An analytic model for predicting the

performance of SOA-based enterprise software

applications,”Proc. Int. CMG Conf., pp. 821–832,2004.

[10] S. Oh, and G. C. Fox, “Optimizing web service messaging

performance in mobile computing,” Future Gener. Comput.

Syst., vol. 23,no. 4, pp. 623–632, May 2007.

[11] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J.

Schiller,“Performance considerations for mobile web services,”

Comput.Commun., vol. 27, no. 11, pp. 1097–1105, Jul. 2004.

[12] G. Imre, M. Kaszo, T. Levendovszky, and H. Charaf, “A novel

cost model of XML serialization,” Electron. Notes Theor.

Comput. Sci.,vol. 261, pp. 147–162, Feb. 2010.

[13] Microsoft, Windows Communication Foundation [Online].

Available:http://msdn.microsoft.com/enus/netframework/aa6633

24.aspx ,Accessed on 15 Jan. 2014.

[14] Oracle, Metro [Online]. Available: http://metro.java.net/

,Accessed on 15 Jan. 2014.

[15] Oracle, JSR 224: Java API for XML-Based Web Services (JAX-

WS)2.0 [Online].Available:http://jcp.org/en/jsr/detail?id=224 ,

Accessed on 15 Jan. 2014.

[16] B. Simon, B. Goldschmidt, and K. Kondorosi, “ A metamodel

for the web services standards,” J. Grid Comput., vol. 11, no.

4,pp. 735–752, 2013.

[17] B. Simon and B. Goldschmidt, “A human readable platform

independent domain specific language for WSDL,” in Proc. 2nd

Int. Conf. Netw. Digit. Technol., pp. 529–536,2010.

AUTHOR PROFILE:

Venkatesh.G obtained his Bachelor of

Technology in Computer Science and

Engineering from S V College of

Engineering affiliated to JNTUA University,

Anantapuramu, India and currently he is

pursing Master degree in Software

Engineering from Sree Vidyanikethan

Engineering College affiliated to JNTUA University, Anantapuramu,

India. E-mail-id: venkateshg.559@gmail.com .

http://msdn.microsoft.com/enus/netframework/aa663324.aspx
http://msdn.microsoft.com/enus/netframework/aa663324.aspx
http://metro.java.net/
http://jcp.org/en/jsr/detail?id=224

	1. introduction
	2. Related work
	3. Web service stack implementation architecture
	The transport layer is responsible for handling the network protocol. On the service side it waits for client connections, on the client side it connects to services. It also transfers bytes between the two participants.
	3.2 Encoding Layer
	The encoding layer translates between bytes and a framework specific message object representation, i.e. it is responsible for serialization and deserialization (e.g. into SOAP, with or without MTOM). The transport and encoding layers are alway...
	3.3 Protocol Layer

	4. open source (oracle):METRO
	5. overview of the Performance prediction Method
	6. Measurement Results
	 WSDL
	 UDDI
	 SKELETON
	 STUB
	 SOAP Protocol
	 HTTP Protocol

	7. conclusion
	REFERENCES

