
ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 14, May 2016

17

All Rights Reserved © 2016 IJARBEST

SQL INJECTION ATTEMPTS: DEFENSE MECHANISM IN ORACLE

DATABASE

 J. KARTHIKEYAN
 M.E-CSE, II Year

 Ranippettai Engineering College
 Vellore, Tamil Nadu, India
 Email Id: karthiknj6@gmail.com
ABSTRACT

SQL injection is a technique to maliciously

exploit applications that use client-supplied data in SQL

statements. Attackers trick the SQL engine into executing

unintended commands by supplying specially crafted

string input, thereby gaining unauthorized access to a

database in order to view or manipulate restricted data.

SQL injection attacks allow attackers to spoof identity,

tamper with existing data, cause repudiation issues such

as voiding transactions or changing balances, allow the

complete disclosure of all data on the system, destroy the

data or make it otherwise unavailable, and become

administrators of the database server.

SQL Injection is a way to attack the data in a

database through a firewall protecting it. It is a method by

which the parameters of a Web-based application are

modified in order to change the SQL statements that are

passed to a database to return data. The aim of this paper

is to create awareness among application developers or

database administrators about the urgent need for

database security. Our ultimate objective is to totally

eradicate the whole concept of SQL injection and to avoid

this technique becoming a plaything in hands of

exploiters.

Keywords: SQLIA - SQL Injection Attacks, Order of
Attacks, Blind SQL Injection, Lateral SQL Injection,
Stored Procedure, Bind Arguments, Dynamic SQL,
DBMS_ASSERT, AUTHID CURRENT_USER

I. INTRODUCTION
SQL is a textual relational database language.

There are many varieties of SQL; however, the differences

among the various dialects are minor. SQL, also known as

Structured Query Language, is a special-purpose

programming language used to communicate with

databases. SQL can insert data, retrieve data, and update

and delete data. The SQL injection technique tricks the

target into passing malicious SQL code to a database by

embedding portions of code with user input. The concept of

the malicious code with the user input is known as ‘code
injection’.

A. SQL Injection Attack
 Many web applications take user input from a form,
often this user input is used literally in the construction of a
SQL query submitted to a database. A SQL injection attack
involves placing SQL statements in the user input.

SQL Injection Attacks (SQLIA) is one of the top threats for
web application security, and SQL injections are one of the
most serious vulnerability types. SQLIA are easy to learn
and exploitable, so this method of attack is easily used by
attackers. SQLIA techniques have become more common,
more ambitious, easy to learn/implement, and increasingly
sophisticated, so there is a need to find an effective and
feasible solution for this problem in the computer security
community.

Structured Query Language Injection Attack (SQLIA)
is the most exposed to attack on the Internet. From this
attack, the attacker can take control of the database
therefore be able to interpolate the data from the database
server for the website. Hence, the big challenge became to
secure such website against attack via the Internet. We have
presented different types of attack methods and prevention
techniques of SQLIA which were used to aid the design
and implementation of our model.

The first aims to put SQLIA into perspective by
outlining some of the materials and researches that have
already been completed. The section suggesting methods of
mitigating SQLIA aims to clarify some misconceptions
about SQLIA prevention and provides some useful tips to
software developers and database administrators.

II. LITERATURE SURVEY

A. Impacts on SQL Injection Attacks
The impact of SQL injection attacks may vary

from gathering of sensitive data to manipulating database
information, and from executing system-level commands to
denial of service of the application. The impact also
depends on the database on the target machine and the roles
and privileges the SQL statement runs with.

Researchers have proposed various solutions and
techniques to address the SQL injection problems.
However, there is no one solution that can guarantee
complete safety. Many current solutions often cannot
address all of the problems. For example, many techniques
proposed are based on the assumption that only the SQL
statements that receive user input are vulnerable to SQL
injection attacks. However, there is a new type of attack
called Lateral SQL injection, which does not require a
vulnerable SQL statement to have user input parameters. A
comprehensive survey can help developers and researchers
better understand the various forms of SQL injection
attacks, as well as the strengths and weaknesses of excising
countermeasures for the attacks. This research will presents

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 14, May 2016

18

All Rights Reserved © 2016 IJARBEST

a survey of SQL injection attacks and various techniques
used to counter them.

B. SQL Attacks Injection Are Performed

There are number of SQL injection techniques
available and they differ from attacker to attacker;
however, the functionality or malfunctioning they exploit is
the same. They find out the vulnerability in SQL queries
using the web URL or the error messages generated. Often
developers use dynamic SQL statements made up of strings
that are concatenated or query parameters directly specified
along with input keywords.

For Example:
Select * from MyLoginAccounts where

loginname='karthi' and loginID='123' and
permission='admin'

When there is a SQL statement like above, there

are great chances of exploit as the developer is passing the

values directly into the SQL statements and which can be

hacked and manipulated to give all the login details

including the password and the database permission to the

hacker if he /she tries to manipulate the above statement to

cause a SQL injection attack. So here the attacker tries to

manipulate the above SQL statement string as below:

Select * from MyLoginAccounts where

loginname='karthi' or '1'='1'-- and loginID='123' and

permission='admin'

By passing one more parameter such as "or '1'='1'"

which is always true, the user tries to capture all the records

from the system. Also, to restrict the other condition to be

executed from the system, attacker uses '--' to make the

keywords following it look like a comment statement. This

way, when an attacker passes a flawed string to the

database query, it will return all the records to the attacker

regardless of the original query. Thus the attacker can

access sensitive information from the database even though

he/she is not a legitimate user.

III. RELATED WORK

A. SQL Injection Strategies
1) Finding SQL Injection
 There are three key aspects for finding SQL injection
vulnerabilities:
1) Identifying the data entry accepted by the application,
2) Modifying the value of the entry including hazardous
strings.
3) Detecting the anomalies returned by the server.

A response of the server which includes a
database error or that is an HTTP error code usually eases
the identification of the existence of SQL injection
vulnerability. However, blind SQL injection is something
that can also be exploited, even if the application doesn’t
return an obvious error.

2) Blind SQL Injection
Blind SQL injection is a type of SQL Injection

attack that asks the database true or false questions and
determines the answer based on the applications response.
This Inferential SQL injection attack is often used when the
web application is configured to show generic error
messages, but has not mitigated the code that is vulnerable
to SQL injection. Sometimes developers hide the error
details which help attackers to compromise the database. In
this situation attacker face to a generic page provided by
developer, instead of an error message. So the SQLIA
would be more difficult but not impossible. An attacker can
still steal data by asking a series of True/False questions
through SQL statements.
Consider two possible injections into the login field:
SELECT accounts FROM users WHERE login=’KARTHI’
and 1=0 -- AND pass= AND pin=0

SELECT accounts FROM users WHERE login=’KARTHI’
and 1=1 -- AND pass= AND pin=0

If the application is secured, both queries would
be unsuccessful, because of input validation. But if there is
no input validation, the attacker can try the chance. First the
attacker submit the first query and receives an error
message because of "1=0". So the attacker does not
understand the error is for input validation or for logical
error in query. Then the attacker submits the second query
which always true. If there is no login error message, then
the attacker finds the login field vulnerable to injection.
SQL injection is no more exception to the golden rule
‘ALL INPUT IS EVIL’. SQL injection is nothing but,
using the CRUD operation against the database in a way
that it no more fulfills the desired results but give the
attacker an opportunity to run his own SQL command
against the database that too using the front end of your
web site.

3) Steps for retrieving ‘USER NAME’:
1. Blind SQL injection for extracting the length of user
name, if length is matched with the value (1, 2, 3...) then it
will WAIT FOR 10 seconds and confirms the length of the
user name.
2. Extracting the user name by matching first letter with
ASCII values, it responses after 10 seconds if matched and
every letter of ASCII value is matched till the length of the
user name.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 14, May 2016

19

All Rights Reserved © 2016 IJARBEST

Fig. 3.1 Finding User Name

4) Blind SQL Injection versus SQL Injection

In normal SQL injection hackers rely on error
messages or Error-based SQL injection returned from the
database in order to give them some clues on how to
proceed with their SQL injection attack. But with blind
SQL injection the hacker does not need to see any error
messages in order to run his/her attack on the database and
that is exactly why it is called blind SQL injection. So,
even if the database error messages are turned off a hacker
can still run a blind SQL injection attack.

B. First Order SQL Injection Attack
The attacker can simply hits the database with a

malicious string attached to an input field and cause the
modified code to be executed immediately. This attack type
is used when the application is very insecure in terms of
exposing the detailed error messages to end users, not
validating input and output.

Following are some examples of first order attack:

 Existing SQL short-circuited to bring back all the
data (for example, adding a query condition such
as OR 1=1).

 Subquery added to an existing statement.

 UNIONS added to an existing statement to
execute a second statement.

Let’s assume that we have a web application with a URL as
shown below which displays the product details based on
the query string parameter (id) value.

1) Original URL:

 http://[site]/product/view.aspx?ID=101

In query string (ID) value is assigned to a

variable directly and not checking the type of user supplied
value. Application expects value of “ID” to be an Integer,
but user can supply a string also as shown below.

2) SQL Injection:
http://[site]/Product/view.aspx?ID=101 OR 1=1

“OR 1=1” is always true condition and returns

all the rows of in a table. With that URL structure, SQL
Statement generated will be look like as shown below.

3) SQL Statement Creation:

SELECT * FROM tblProduct
WHERE ProductId = 101 OR 1=1

When the above statement is executed, all the
rows from tblProduct table is returned and displayed to the
user. Now, the user confirms that, there is no input
validation done in the server and can execute whatever he
supply in the query string.

4) Tautologies: This type of attack injects SQL tokens to
the conditional query statement to be evaluated always true.
This type of attack used to bypass authentication control
and access to data by exploiting vulnerable input field
which use WHERE clause. Well, mostly text box input is
the best friend of the attacker. However any input going
neatly to the database is not safe.

Fig. 3.2 SQL Injection in Login Form

SELECT * FROM employee
WHERE userid = 'user1' or 1 = 1 -- and password ='''
This injection is successful as it logged on to the account of
a client of the company; so even this simple code can cause
trouble. As the tautology statement (1=1) has been added to
the query statement so it is always true. Attacker uses '--' to
make the keywords following it look like a comment
statement.
5) Finding Number of Columns in a table:

After locating a vulnerable site, you need to
figure out how many columns are in the SQL database and
how many of those columns are able to accept queries from
you. Append an “order by” statement to the URL like this:

http://[site]/index.php?catid=1 order by 1

Continue to increase the number after “order by” until you
get an error. The number of columns in the SQL database is
the highest number before you receive an error.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 14, May 2016

20

All Rights Reserved © 2016 IJARBEST

6) Union Query: By this technique, attackers join injected
query to the safe query by the word UNION and then can
get data about other tables from the application. Suppose
for our example that the query executed from the server is
the following:
SELECT Name, Phone FROM Users WHERE Id=$id

By SQL injecting the following Id value:

$id=1 UNION ALL SELECT creditCardNumber, 1
FROM CreditCardTable

We will have the following query with multiple
statements:

SELECT Name, Phone FROM Users WHERE Id=1
UNION ALL SELECT creditCardNumber, 1 FROM
CreditCardTable

This will join the result of the original query with all the
credit card users. Union-based SQLi is an in-band SQL
injection technique that leverages the UNION SQL
operator to combine the results of two or more SELECT
statements into a single result which is then returned as part
of the HTTP response.

C. Second Order SQL Injection Attack

The attacker injects into persistent storage (such
as a table row) which is deemed as a trusted source. An
attack is subsequently executed by another activity.
Attacker hits the database with a SQL statement to insert
malicious query in a table. Later, the attacker will execute.

1) Piggy-backed Queries
 Think of what the following input can cause to the
application.

http://[site]/Product/view.aspx?ID=101;DELETE
FROM tblProduct

Using the following SQL statement to select the product,
based on ID.

SELECT * FROM tblProduct Where ProductId = '101'

What could happen if the seller has entered the product ID
as 101'; DELETE FROM tblProduct. Query for selecting
the product will look like as shown below and will delete
all the records from tblProduct table.

SELECT * FROM tblProduct Where ProductId =
'101'; DELETE FROM tblProduct

In this type of attack, intruders exploit database by the
query delimiter, such as ";", to append extra query to the
original query. With a successful attack database receives
and execute a multiple distinct queries. Normally the first

query is legitimate query, whereas following queries could
be illegitimate. So attacker can inject any SQL command to
the database. In the following example, attacker inject " 0;
drop table user " into the pin input field instead of logical
value. Because of ";" character, database accepts both
queries and executes them. It is noticeable that some
databases do not need special separation character in
multiple distinct queries, so for detecting this type of
attack, scanning for a special character is not impressive
solution. I hope those examples had helped you to
understand what the SQL Injection can do for an
application.

D. Lateral SQL Injection Attack

The attacker can manipulate the implicit function
To_Char () by changing the values of the environment
variables, NLS_Date_Format or
NLS_Numeric_Characters. A new type of attack that could
give a hacker access to an Oracle database, called a Lateral
SQL injection, could be used to gain database administrator
privileges on an Oracle server in order to change or delete
data or even install software.

Examples of Lateral SQL Injection Attacks

Using Lateral SQL Injection, an attacker can
exploit a PL/SQL procedure that does not even take user
input.

Fig. 3.3 before Lateral SQL Injection
When a variable whose data type is date or

number is concatenated into the text of a SQL statement,
then, contrary to popular belief, there still is a risk of
injection. The implicit function TO_CHAR() can be
manipulated by using NLS_Date_Format or
NLS_Numeric_Characters, respectively.

You can include arbitrary text in the format

model, and you do not need to include any of the
“structured” elements such as Mon, hh24, and so on. Here's
the “normal” use of that flexibility:

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 14, May 2016

21

All Rights Reserved © 2016 IJARBEST

Fig. 3.4 after Lateral SQL Injection

SQL injection attacks do not have to return data

directly to the user to be useful. “Blind” attacks (for
example, that create a database user, but otherwise return
no data) can still be very useful to an attacker. In addition,
hackers are known to use timing or other performance
indicators, and even error messages to deduce the success
or results of an attack.

E. SQL Injection Attacks Stored Procedures

They are statements which are stored in DBs. The

main problem with using these procedures is that an
attacker may be able to execute them and damage database
as well as the operating system and even other network
components. Usually attackers know system stored
procedures that come with different and almost easily can
execute them.

CREATE OR REPLACE PROCEDURE TAB_COLS
(VCOLS VARCHAR2, VTABS VARCHAR2)
AS
 STMT VARCHAR2(4000);
 TYPE VTYPE IS VARRAY (250) OF
VARCHAR2(250);
 RESULTS VTYPE;

BEGIN
 STMT: = 'SELECT '||VCOLS ||' FROM '||VTABS;
 DBMS_OUTPUT.PUT_LINE(STMT);
 EXECUTE IMMEDIATE STMT BULK COLLECT
INTO RESULTS;
 FOR J IN 1..RESULTS.COUNT() LOOP
 DBMS_OUTPUT.PUT_LINE (RESULTS(J));
 END LOOP;
END TAB_COLS;
1. Executing Procedure:
 EXEC TAB_COLS ('FIRST_NAME','HR.EMPL');
This executes to retrieve the records of Column:
“FIRST_NAME” from Table: “EMPL”

2. Execution Procedure with SQL Injection:

EXEC TAB_COLS ('FIRST_NAME','HR.EMPL WHERE
1=2 UNION SELECT TABLE_NAME FROM

ALL_TABLES WHERE
TABLESPACE_NAME=''USERS''');

Now “1=2” neglects the EMPL table, using UNION
operation retrieves all TABLE_NAME’s from
ALL_TABLES of specific users while executing the SQL
injected query instead of column FIRST_NAME.

F. Avoiding Dynamic SQL
 Because SQL injection is a feature of SQL
statements dynamically constructed via user inputs, it
follows that designing your application to be based on
static SQL reduces the chances of attack.

1) Static SQL Syntax Template
Consider the following statement:

Stmt constant varchar2(32767) :=
'SELECT Email FROM EMPLOYEES WHERE v_EMPID =
:B;

Although the above statement is not a compile-time-fixed
SQL statement text, the SQL syntax template of the above
statement, however, is frozen at compile time. It is clear
that the SQL statement will extract Email of the employee
whose email has been specified by the bind variable B.
This kind of statement is a run-time static SQL statement
template.

2) Dynamic SQL Syntax Template

Now consider the following statement:

Stmt constant varchar2(32767) :=
'SELECT ' || Col_List() || ' Report from "My
Table" where v_EMPID =: B;

In the above statement, the SQL syntax template is
unresolved at compile time. Col_List () is invoked at run
time, until then it is not clear how many columns the SQL
statement will extract. This kind of statement is a dynamic
SQL statement template.

G. Fixing Dynamic SQL Injection using Oracle
Database Code

A stored procedure is a logical set of SQL

statements, performing a specific task; it is compiled once
and stored on a database server for all clients to execute;
they are used very commonly for the many benefits that
they provide. Often times, stored procedures are blindly
considered secure; however, it is not so always. SQL
Injection is a concern when dynamic SQL is handled
incorrectly in a stored procedure.
In Oracle, Dynamic SQL can be used in
1. EXECUTE IMMEDIATE statements
2. DBMS_SQL package and
3. Cursors.

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 14, May 2016

22

All Rights Reserved © 2016 IJARBEST

1) Execute Immediate Statement
a) Secure Usage
(Execute Immediate - named parameter)
1 Stmt: = 'SELECT emp_id FROM employees WHERE
emp_email =: email’;
2 EXECUTE IMMEDIATE Stmt USING email;

(Execute Immediate - positional parameter)
1 Stmt: = 'SELECT emp_id FROM employees WHERE
emp_email =:1 and emp_name =:2';
2 EXECUTE IMMEDIATE Stmt USING email, name;

Here, bind variables are used to set data in the query, hence
SQL injection proof.

b) Vulnerable Usage
1 Stmt: = 'SELECT emp_id FROM employees WHERE
emp_email = ''' || email || '''';
2 EXECUTE IMMEDIATE Stmt INTO empId;

Here, the input variable "email" is used directly in the
query using concatenation; opening up the possibility to
manipulate the "where" clause.

2) DBMS_SQL package
a) Secure Usage
1 Stmt: = 'SELECT emp_id FROM employees WHERE
emp_email =: email’;
2 empcur: = DBMS_SQL.OPEN_CURSOR;
3 DBMS_SQL.PARSE (empcur, Stmt,
DBMS_SQL.NATIVE);
4 DBMS_SQL.BIND_VARIABLE (empcur, ':email',
email);
5 DBMS_SQL.EXECUTE (empcur);

Here, bind variable is used to set data to query, hence SQL
injection proof.

b) Vulnerable Usage
1 Stmt: = 'SELECT emp_id FROM employees WHERE
emp_email = ''' || email || '''';
2 empcur: = DBMS_SQL.OPEN_CURSOR;
3 DBMS_SQL.PARSE (empcur, Stmt,
DBMS_SQL.NATIVE);
4 DBMS_SQL.EXECUTE (empcur);

Here, the input variable "email" is used directly in the
query using concatenation; opening up the possibility to
manipulate the "where" clause.

3) Cursor with dynamic query
a) Secure Usage
1 Stmt: = 'SELECT emp_id FROM employees WHERE
emp_email =: email’;
2 OPEN empcur FOR Stmt USING email;

Here, bind variable is used to set data to the query, hence
SQL injection proof.

b) Vulnerable Usage
1 Stmt: = 'SELECT emp_id FROM employees WHERE
emp_email = ''' || email || '''';
2 OPEN empcur FOR Stmt;
Here, the input variable "email" is used directly in the
query using concatenation; opening up the possibility to
manipulate the "where" clause.

Dynamic SQL may be unavoidable in the following types
of situations:
•You do not know the full text of the SQL statements that
must be executed in a PL/SQL procedure. For example, a
SELECT statement that includes an identifier (such as table
name) that is unknown at compile time or a WHERE clause
in which the number of sub clauses is unknown at compile
time.
• You want to execute DDL statements and other SQL
statements that are not supported in purely static SQL
programs.
• You want to write a program that can handle changes in
data definitions without the need to recompile.

If you must use dynamic SQL, try not to
construct it through concatenation of input values. Instead,
use bind arguments. If you cannot avoid input
concatenation, you must validate input values, and also
consider constraining user input to a predefined list of
values, preferably numeric values.

H. Avoidance Strategies against SQL Injection
Attacks

1) Using Bind Arguments

If you must use dynamic SQL, using bind
arguments affords the next best protection against SQL
injection attacks. Using bind arguments also enables cursor
sharing, and thus improves application performance.

2) Use Bind Arguments with Dynamic SQL

You can use bind arguments in the WHERE
clause, the VALUES clause, or the SET clause of any SQL
statement, as long as the bind arguments are not used as
Oracle identifiers (such as column names or table names),
or key words. For example, you can rewrite this dynamic
SQL with concatenated string value:

v_stmt:=
 'SELECT '||filter (p_column_list) ||' FROM
employees '||
 'WHERE department_name = '''||
p_department_name ||'''';

EXECUTE IMMEDIATE v_stmt;
into this dynamic SQL with a placeholder (:1) using a bind
argument (p_department_name):

v_stmt:=

 'SELECT '||filter (p_column_list) ||' FROM

employees '||
 'WHERE department_name =: 1’;

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 14, May 2016

23

All Rights Reserved © 2016 IJARBEST

EXECUTE IMMEDIATE v_stmt
USING p_department_name;

So developers often use dynamic SQL to handle varying
number of IN - list values or LIKE comparison operators in
the query condition.

Fig. 3.5 Strategic Flowchart SQL Injection Attacks

3) Use Bind Arguments with Dynamic PL/SQL

As with dynamic SQL, you should avoid

constructing dynamic PL/SQL with string concatenation.
The impact of SQL injection vulnerabilities in dynamic
PL/SQL is even more serious than in dynamic SQL
because with dynamic PL/SQL, multiple statements (such
DELETE or DROP) can be batched together and injected.
If you must use dynamic PL/SQL, try to use bind
arguments. For example, you can rewrite this dynamic
PL/SQL with concatenated string values:

v_stmt:=
 'BEGIN
 get_phone (''' || p_fname ||''','''||
p_lname ||''');
 END;';

EXECUTE IMMEDIATE v_stmt;

into this dynamic PL/SQL with placeholders (:1,:2) using
bind arguments (p_fname, p_lname):

v_stmt:=
 'BEGIN get_phone (:1,:2);
END;';

EXECUTE IMMEDIATE v_stmt USING p_fname,
p_lname;

4) Limitations of Bind Arguments
Although you should strive to use bind arguments

with all dynamic SQL and PL/SQL statements, there are
instances where bind arguments cannot be used:

• DDL statements (such as CREATE, DROP, and
ALTER)

• Oracle identifiers (such as names of columns,
tables, schemas, database links, packages, procedures, and
functions)

If bind arguments cannot be used with the

dynamic SQL or PL/SQL, you must filter and sanitize all
input concatenated to the dynamic statement.

I. DBMS_ASSERT Package

1) Filtering Input with DBMS_ASSERT

To guard against SQL injection in applications
that do not use bind arguments with dynamic SQL, you
must filter and sanitize concatenated strings. The primary
use case for dynamic SQL with string concatenation is
when an Oracle identifier (such as table name) is unknown
at code compilation time.

The Oracle-supplied DBMS_ASSERT package
contains a number of functions that can be used to filter and
sanitize input strings, particularly those that are meant to be
used as Oracle identifiers and help in guarding against SQL
injection in applications that use dynamic SQL built with
concatenated input values. Rather than relying on public
synonyms, always specify the SYS schema when you call
DBMS_ASSERT. In case your filtering requirements
cannot be satisfied by the DBMS_ASSERT package, you
may need to create your own filter.

CREATE OR REPLACE PROCEDURE TABS_COLS
(VCOLS VARCHAR2, VTABS VARCHAR2) AS

STMT VARCHAR2(400);
TYPE VTYPES IS VARRAY(250) OF VARCHAR2(250);
RESULTS VTYPES;

BEGIN
 STMT: = 'SELECT'||
DBMS_ASSERT.simple_sql_name(VCOLS) ||

 ‘' FROM
'||DBMS_ASSERT.simple_sql_name(VTABS);
 DBMS_OUTPUT.PUT_LINE(STMT);

EXECUTE IMMEDIATE STMT BULK COLLECT INTO
RESULTS;
 FOR J IN 1..RESULTS.COUNT() LOOP
 DBMS_OUTPUT.PUT_LINE(RESULTS(J));
 END LOOP;
END TABS_COLS;

1) EXEC TAB_COLS ('FIRST_NAME','HR.EMPL');
Here ’FIRST_NAME’ retrieved successfully

2) EXEC TAB_COLS ('FIRST_NAME','HR.EMPL
WHERE 1=2 UNION SELECT
DEPARTMENT_NAME FROM
HR.DEPARTMENTS');

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 14, May 2016

24

All Rights Reserved © 2016 IJARBEST

Here trying to retrieve DEPARTMENT_NAME by SQL
injection using UNION operator from DEPARTMENTS
table, but DBMS_ASSERT.simple_sql_name

raised below error and stops SQL injection.
*
ERROR at line 1:
ORA-44003: invalid SQL name
ORA-06512: at "SYS.DBMS_ASSERT", line 146
ORA-06512: at "HR.TABS_COLSE", line 6
ORA-06512: at line 1

J) AUTHID CURRENT_USER

The AUTHID CURRENT_USER is used when

you want a piece of code (PL/SQL) to execute with the
privileges of the current user, and NOT the user ID that
created the procedure. This is termed an "invoker rights",
the opposite of "definer rights". The AUTHID
CURRENT_USER is the opposite of AUTHID
DEFINER.

In the same sense, the AUTHID
CURRENT_USER is the reverse of the "grant execute"
where the current user does not matter, the privileges of the
creating user are used. PL/SQL, by default, runs with the
privileges of the schema within which they are created no
matter who invokes the procedure. In order for a PL/SQL
package to run with invokers rights AUTHID
CURRENT_USER has to be explicitly written into the
package. The AUTHID CURRENT_USER clause tells the
kernel that any methods that may be used in the type
specification (in the above example, none) should execute
with the privilege of the executing user, not the owner.

1) Code sample using AUTHID CURRENT_USER to
execute code with invoker's rights:

1.1 Procedure that uses definer's rights

CREATE OR REPLACE PROCEDURE change_password
(p_username VARCHAR2 DEFAULT NULL,
p_new_password VARCHAR2 DEFAULT NULL)
IS
 v_sql_stmt VARCHAR2(500);
BEGIN
 v_sql_stmt:= 'ALTER USER '||p_username ||'
IDENTIFIED BY’|| p_new_password;

EXECUTE IMMEDIATE v_sql_stmt;
END change_password;

1.2 Procedure that uses invoker's rights
CREATE OR REPLACE
PROCEDURE change_password (p_username
VARCHAR2 DEFAULT NULL,
 p_new_password VARCHAR2 DEFAULT NULL)
AUTHID CURRENT_USER
IS

 v_sql_stmt VARCHAR2(500);
BEGIN
 v_sql_stmt:= 'ALTER USER '||p_username ||'
IDENTIFIED BY’|| p_new_password;

 EXECUTE IMMEDIATE v_sql_stmt;
END change_password;
/

K. Mitigation Strategies
1. Use bind arguments: Use SQL command parameters
instead of directly passing the text value to input fields.
This would eliminate attacks and will help in improving
performance.
2. Avoid dynamic SQL with concatenated input: Try to
avoid concatenated input as this attracts attackers and thus
attacks.
3. Filter and sanitize input: Create query filters to only
pass values which are intended ones, and filter out those
which may cause or attract attacks. For example, the
DBMS_ASSERT package contains a number of functions
that can be used to sanitize user input and help in guarding
against SQL injection in applications that use dynamic SQL
built with concatenated input values.
4. Reduce the attack surface: Carry out a thorough
analysis of the privileges granted to users versus the
requirements. If found in excess, revoke those permissions
and allow only intended ones.

IV. TESTING SQL INJECTION

A. Tools for Automatically Finding SQL Injection

1) SQLMAP

SQLMAP is an open source penetration testing
tool that automates the process of detecting and exploiting
SQL injection flaws and taking over of database servers. It
comes with a powerful detection engine, many niche
features for the ultimate penetration tester and a broad
range of switches lasting from database fingerprinting, over
data fetching from the database, to accessing the underlying
file system and executing commands on the operating
system via out-of-band connections.

2) SQLNINJA

SQLNINJA is a tool targeted to exploit SQL
Injection vulnerabilities on a web application that uses
Microsoft SQL Server as its back-end. Its main goal is to
provide a remote access on the vulnerable DB server, even
in a very hostile environment. It should be used by
penetration testers to help and automate the process of
taking over a DB Server when SQL Injection vulnerability
has been discovered.

V. CONCLUSION

In this paper, we have presented a study and

comparison of different current techniques for detecting

ISSN 2395-695X (Print)

 ISSN 2395-695X (Online)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

Vol. 2, Special Issue 14, May 2016

25

All Rights Reserved © 2016 IJARBEST

and preventing SQLIAs. To perform this evaluation, we
first identified the various types of SQLIAs known to date.
We then evaluated the considered techniques in terms of
their ability to detect and/or prevent such attacks.

Nowadays, many businesses and organizations use

web applications to provide services to users. Web
applications depend on the back-end database to supply
with correct data. However, data stored in databases are
often targets of attackers. SQL injection is a predominant
technique that attackers use to compromise databases. I
have conducted a survey of different types of SQL injection
attacks, and have built applications and Oracle database
environment to illustrate how they work. There are many
types and forms of basic SQL injection attacks. The
combination of them could come up with attacks that are
more complicated. I mentioned some automatic testing
tools for detecting SQL injection which may help DBAs.
Also very little emphasis is laid on preventing SQLIA in
stored procedures.

The proposed solutions for preventing or detecting

SQLIA provide security to either application layer or
database layer but not to both. We have proposed a
technique that provides security to both application layer as
well as database layer via frontend phase and backend
phase. Researchers have provided this two phase security
because if security is compromised at one phase, the second
phase can still provide security from attacks. Future work
should focus on optimized and evaluating the techniques
correctness and usefulness in practice.

REFERENCES

[1] SQL Injection Knowhow, Arpit Dubey, 6 June 2011
http://www.codeproject.com/Articles/206814/SQL-
Injection-Knowhow

[2] D. Litchfield, “Lateral SQL Injection: A New Class of
Vulnerability in Oracle,” NGS Software Ltd., United
Kingdom, Feb. 2008.

[3] Tutorial on Defending Against SQL Injection Attacks
http://download.oracle.com/oll/tutorials/SQLInjection/inde
x.htm

[4] Securing PL/SQL Applications with DBMS_ASSERT
http://www.ngssoftware.com/papers/DBMS_ASSERT.pdf

[5] SQL Injection Attacks by Example
http://www.unixwiz.net/techtips/sql-injection.html

