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Abstract 

  
Biomedical named entity recognition (Bio-NER) is the critical 

step in text mining, where the data redundancy and 

performance of processing huge data is the challenging issue. 

Conditional Random Field is the conditional probability model 

used to overcome traditional FP-tree algorithm challenges, 

even in CRF achieving better performance is nontrivial due to 

internal sequential process. Here parallelism is introduced by 

combining and parallelizing the Limited-Memory Broyden-

Fletcher-Goldfarb-Shanno (LBFGS) and Viterbi algorithms 

called parallel CRF or MRCRF (MapReduce CRF). The 

MRLB (Map Reduce LBFGS) algorithm and MRVtb 

(MapReduce Viterbi) algorithm enhance the parameter 

estimation and no data redundancy. MRCRF algorithm 

exhibits better performance improvement and information 

accuracy compared to traditional systems. Additionally the 

new IMRCRF (Improved Map Reduce CRF) shows better 

performance in terms of processing huge data from several 

nodes. 

 

Keywords— Biomedical Named Entity Recognition, 

Conditional Random Fields, Map Reduce. 

 

I.INTRODUCTION 

In the 21st century, it is increasingly inseparable from the 

network, people visit dozens or even hundreds of pages, or 

upload photos or speech every day, which makes the data 

content on the network into a geometric growth, and the 

traditional technical architecture has become increasingly 

unable to meet the current needs of the vast amounts of data. 

Therefore, researching massive data processing and storage 

become more and more popular nowadays. Big data is a large 

data that it becomes difficult to process the conventional 

database systems. If the data is very large, moves very fast, or 

doesn’t fit the structures of the database architectures. To gain 

value from this data, choose another way to process the data. 

Big Data in general is defined as high volume, velocity and 

variety information assets that demand cost-effective, 

innovative forms of information processing for enhanced 

insight and decision making. Big Data is the frontier of the 

firm’s ability to store, process and access large volume of data 
it needs to operate effectively, make decisions, reduce risks, 

and serve customers. However, the amount of data generated 

can often be very large for a single computer to process in a 

reasonable amount of time. Furthermore, the data itself may be 

too big to store on a single machine. Therefore, in order to 

reduce the time taken to process the data, and to allocate the 

storage space for large files, it is necessary to write programs 

that can execute on multiple computers and distribute the 

workload among them. 

 

II.HADOOP 

 

Hadoop is the foundation for most big data architecture. 

Apache hadoop is an open source java programming 

framework for fast storing and fast processing large data sets 

with cluster of commodity hardware. Cluster is a set of 

machine in single LAN (Local Area Network). The Hadoop is 

mainly constituted by the underlying distributed file system 

HDFS (Hadoop Distributed File System) and MapReduce 

layer of parallel programming model engine. Hadoop is used 

by various universities and companies like Google, eBay, 

Facebook, IBM, LinkedIn and Twitter. 

 
Fig. 1.HDFS and MapReduce 
 

A. HDFS  

 

HDFS is a reliable distributed file system that provides high-

throughput and scalable access to data. MapReduce is a 

distributed framework for executing the work in parallel. 

Hadoop has the master/slave architecture for both processing 

and storage. Figure 1 shows the HDFS and MapReduce. 

HDFS is a specially designed file system for storing massive 

amount of data sets with cluster of commodity hardware with 
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steaming access pattern. Steaming access pattern means write 

once and read any number of times but don’t change content 
of files in file system. HDFS differ from other file system by 

its significant. HDFS is a very large distributed file system 

which is highly fault-tolerant, provides high throughput access 

to the large data and deployed on low-cost hardware. HDFS is 

mainly used for storing data, and simply adding the number of 

servers can achieve growth in storage capacity and computing 

power. 

 

B.   MAP REDUCE 

 

MapReduce can make full use of the computing resources of 

each server's CPU, which efficiently handles with the stored 

data and calculations. To address the above issues, Google 

developed the Google File System (GFS), which is a 

distributed file system architecture model for processing large 

amount of data and created the MapReduce programming 

model. The MapReduce programming model is for processing 

the massive amount of data in parallel. Hadoop is open source 

software which manage MapReduce framework, written in 

Java, originally developed by Yahoo. 

 

 

 
 

Fig .2. MapReduce Architecture 

 

A MapReduce consists of two tasks namely the Map and 

Reduce task. Each Map task takes key-value pair as input and 

produce key-value pair as an output. The input data are split 

into various input splits. Based on the number of input splits 

Mapper will be assign. Record Reader is an interface between 

input split and Mapper which is used to convert record into 

key value pair. Mapper will read key value pair as an input 

and produce key value pair as an output. Now the Reducer 

will combine all the intermediate values associated with a 

particular key. Both input pairs of Mapper and Reducer are 

managed by the HDFS. The advantage of MapReduce is 

highly scalable, transparent fault-tolerant processing and 

automatic parallelization. Figure 2 shows the MapReduce 

architecture. MapReduce has been adopted by Google, 

Microsoft and Facebook. 

 

      III.CONDITIONAL RANDOM FIELDS 

 

Conditional random fields (CRF), is a type of conditional 

probability model, has been widely applied in biomedical 

named entity recognition .The advantage of the CRF model is 

the ability to express long-distance-dependent and overlapping 

features. CRF has shown empirical success recently in        

Bio-NER, since it is free from the so-called label bias problem 

by using a global normalization. However, when facing large-

scale data, the time efficiency of the CRF model with the 

traditional stand-alone processing algorithm is not satisfactory. 

For example, CRF takes approximately 45 hours (3.0GHz 

CPU, 1.0G memory, and 400 iterations) to train only 400K 

training examples. It is caused by the problem of CRF that the 

model parameter estimation cycle is long, because it needs to 

compute the global gradient for all features. The time 

complexity and space complexity of the whole algorithm show 

non-linear growth with the growth of the training data. To 

efficiently handle large-scale data, faster processing and 

optimization algorithms have become critical for biomedical 

big data. Hence, it is vital to develop new algorithms that are 

more suitable for parallel architectures. The CRF model needs 

to consider three key steps, i.e., feature selection, parameter 

estimation, and model inference. The parameter estimation 

step is very time-consuming because of the large amount of 

calculations especially when the training data set is large, 

which becomes the most important reason that degrades the 

performance of the CRF model. An optimization algorithm 

called Limited memory BFGS (L-BFGS) is a popular method 

that has been used to do parameter estimation of CRF. 

However, since it is an iterative algorithm, achieving high 

parallelism is not easy and demands considerable research 

attention for developing new parallelized algorithms that will 

allow them to efficiently handle large-scale data. It is a 

challenging task to parallelize such a dependent iterative 

algorithm. The task of making iterations independent of each 

other and thus leveraging and boosting parallel architectures is 

non-trivial. In this paper, we solve such an inter-dependent 

problem with an efficient strategy. Current methods of 

improving time efficiency of the CRF model focus on how to 

reduce the model parameter estimation time. However, the 

complexity of the model inference step increases quickly with 

the increase of constraint length of training data set as well. 

The model inference step can be performed using a modified 

Viterbi algorithm. The Viterbi algorithm within the 

MapReduce framework parallelizes the model inference step 

with a simple strategy. 

 

IV.CONDITIONAL RANDOM FIELDS USING 

MAPREDUCE 

 

Nowadays, FIM is most significantly employed by researchers 

as a result of it's wide applied in planet to search out the 

frequent itemsets. As a volume of information will increase 

day by day, the issues of measurability and potency become a 

lot of severe. As an answer to the current downside, we have a 

tendency to style a parallel mining of frequent itemset 

mistreatment CRF formula on MapReduce framework. during 

this paper we have a tendency to incorporate CONDITIONAL 

RANDOM FIELDS (CRF), instead of ancient FP-Tree. CRF 

has major four blessings over ancient FP-tree like; it involves 

solely 2 spherical of scanning that minimizes I/O overhead. 

Then the CRF may b e a extremely improved thanks to 
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partition a information, that significantly reduces the search 

area. 

 

 
Fig. 3. Flow of the MapReduce CRF  

 

 Next is the frequent items in each transaction are inserted as 

nodes into the CRF for compressed storage. At last all 

frequent itemsets are generated without traversing the tree 

recursively by checking the leaves of each CRF which 

significantly reduces computing time. The sequences of steps 

followed are, 

 

i. Datasets Partitioning 

ii. MRLB 

iii. MRViterbi  

 

 

i. Datasets Partitioning 

 
The CRF partitions the info set into M smaller sets and 

allocates every partitioned off subset to one map task. within 

the case of the Viterbi formula, the output of every map 

operate may be a partial state sequence for the native partition. 

Hence, we have a tendency to don't would like a combined 

output, and that we will save the scale back stage. The output 

of map that isn't any longer the intermediate result are going to 

be directly output and becomes the ultimate result. In 

MapReduce, the info set is split into several subsets, whose 

size depends on the amount of map tasks which will be run in 

parallel. to confirm the context {of every|of every} word in 

each sentence of Bio-NER, one sentence can't be split into 2 

map tasks. Additionally, so as to realize optimum resource 

utilization and minimize the necessity for replication, we are 

going to develop a load reconciliation technique to partition an 

outsized dataset.  

 

 
 
Where M denotes the amount of map tasks, and R resembles 

N mod M. we will divide the coaching information into M 

random subsets with about equal size. If N mod M = zero, 

each map tasks has one input split with [N/M] sentences. If N 

Mod M = zero, R map tasks have the input split with [N/M] 

sentences et al have the input split with [N/M] sentences. 

 

ii. MRLB 
 

Parameter estimation for giant dataset, the model can hugely 

increase the time consumption. Concerning ninetieth of the 

full computation time of L-BFGS is employed for the 

parameter estimation. If the   parameter estimation is 

accelerated, time consumption can slow down sharply. 

Therefore, the most a part of parallelization of the L-BFGS 

formula is parallelized objective operate gradient calculation. 

 

We can extract the factor as follows, 

 
iii. MRViterbi 

 
The MRViterbi partitions the info set into M smaller sets so as 

to balance the load and allocates every partitioned off subset 

to one map task, every map optimizes a partition in parallel. 

Within the Viterbi formula, the output of every map operate 

may be a partial state sequence for the native partition. Hence, 

no have to be compelled to mix the output and scale back 

method time is saved. The output of map that isn't any longer 

the intermediate result are going to be directly output and 

becomes the ultimate result. 

 

V.FREQUENT ITEMSET MINING 

 

Frequent items are an item that occurs frequently in the 

dataset. Frequent itemset mining (FIM) is a one of the core 

data mining operation. Frequent itemset mining is mainly used 

for market basket analysis. Consider an example a set of items 
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that contains bread and butter which always occurs frequently 

together. A traditional frequent itemset mining algorithms are 

Apriori and FP-growth algorithm. Apriori algorithm is a level-

wise iterative approach were k items are used to generate the 

k+1 items. Apriori algorithm consists of two steps join step 

and prune step. Initially candidate items are generated by 

joining process after that by checking the minimum support 

count frequent items will be generated. The process will be 

repeated until all k frequent items generation. However it has a 

disadvantage that many candidate items should generate which 

increases the computing time. To overcome that a pattern 

growth approach algorithm is proposed which significantly 

reduce the size of candidate sets. FP-Growth algorithm adopts 

a divide and conquers strategy for finding frequent itemsets. It 

also has some disadvantage that frequent items are generated 

by repeated scanning of database and recursive traversing of 

tree. 

i. Generating one Itemsets and K Itemsets 

ii. Generating Frequent K Itemsets 

 

i. Generating one Itemsets and K Itemsets 

Phase1 consists of two round of scanning the database. At the 

first round of scanning the database frequent one item will be 

generated based on the minimum support count. At the second 

round of scanning the database all k-items will be generated 

by pruning the infrequent items from each transaction. 

ii. Generating Frequent K Itemsets 

Phase2 consists of a two process decompose each ‘h’ itemsets 
into ‘k’ itemsets. After decomposing process the repetitive 
construction of K-CRF-Tree and all ‘k’ frequent itemsets are 
generated by checking the leaves of CRF-Tree where ‘k’ is 
from M down to 2. After decomposing process ‘k’ itemsets are 
generated that are used for the construction of K CRF Tree. 

Initially the root is labelled as null. 

Then each ‘k’ itemsets are inserted into the tree. If first 
frequent item exists as one of the children of the root, then it 

denote the child as a temporary 1
st
 root, if it is not exist then 

add a new node for this item as a child of the root node and 

denote it as temporary 1
st
 root. Then the s

th
 frequent item of 

the k itemset, where ‘s’ is from 2 to k - 1, check if the s
th

 

frequent item exists as the children of the temporary (s-1)
th
 

root, then denote the child as a temporary s
th

 root. If it does not 

exist, then add a new node under this item as a child of the 

temporary (s-1)
th

 root and denote it as a temporary s
th

 root. 

This process is repeated until K-CRF Tree is constructed. By 

checking the leaf node all k frequent items will be generated. 

 

VI. CATEGORICAL DATA 

 

Three groups of key words in MEDLINE by using GoPubMed 

are, 

  

i. First group is biological-process and disease,  

ii. Second group is cellular-component and disease, 

iii. Third group is molecular-function and disease.  

There are two effective parallel implementations currently, 

i.e., the CRF based on MPI (Message Passing Interface) and 

GPU (Graphics Processing Units). MPI and GPU are not 

suitable for large volumes of data in data-intensive 

applications. The drawback of MPI is communication delay in 

a big data environment for data-intensive applications, 

because a large amount of data are exchanged between a large 

number of nodes, and network communications will spend 

long time, such that the MPI method shows low performance. 

Due to the capacity limits of global memory and the 

bottleneck of data transmission for data intensive applications 

in a big date environment, the GPU method also shows low 

performance. Hadoop, an implementation of MapReduce, has 

a master-slave file system HDFS, which is the underlying 

support for the MapReduce data processing function. Hadoop 

can easily realize the computation of data storage migration 

computation”, thus greatly improve the computational 

efficiency of the system. MapReduce deals with huge amount 

of data, for data-intensive applications. Virtual machine 

instances are used in a public cloud to run Hadoop 

applications and the CPU instructions, memory space within a 

virtual machine have to be translated and mapped to its 

physical machine host. Therefore, the intermediate operation 

degrades the efficiency of running Hadoop jobs, and deploys 

them on physical machines directly. Meanwhile virtual 

machine templates enables public cloud running in Hadoop 

applications and more execution nodes can be instantiated. 

Therefore, the scalability capacity will be much better, but this 

is not the focus of this paper. To analyze the speed in a 

efficient way, a local cluster interacts with the virtualization 

hypervisor, reveals the real performance of Hadoop jobs. 

 
 VII. RESULTS AND DISCUSSIONS 
 

The experiment dataset is collected from different 

groups of key words in MEDLINE by using GoPubMed. The 

first group is biological process and disease, the second group 

is cellular-componentand disease, and the third group is 

molecular-function and disease. The unparallel CRF was 

carried out on a single machine.There are two effective 

parallel implementations currently, i.e., the CRF based on 

Message Passing Interface and Graphics Processing Units. 

However, they are not suitable for large volumes of data in 

data-intensive applications.  

 

A.  Message Parsing Interface and GPU 

 

The strongest weakness of MPI is communication 

latency in a big data environment for data-intensive 

applications, because a large amount of data are exchanged 

between a large number of nodes, and network 

communications will spend long time, such that the MPI 

method shows low performance. Due to the capacity limits of 

global memory and the bottleneck of data transmission for 

data-intensive applications in a big data environment, the GPU 

method also shows low performance. Hence, we have the 

proposed algorithm compared with the sequential CRF 

algorithm, but not compared with other parallel 

implementations of the algorithm.  
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B.  Hadoop to overcome weakness of MPI and GPU 

 

Hadoop 2.6.0, YARN (Yet Another Resource 

Negotiator) or MRv2 is a Next generation of map reduce, 

fundamental idea is to split up the two major functionalities 

Job Tracker, resource management and job scheduling into 

separate deamons. The idea is to have a global 

ResourceManager (RM) and per application 

ApplicationMaster(AP). The ResourceManager and per-node 

slave, the NodeManager (NM), cast the data-computation 

framework. The ResourceManager is the ultimate authority 

that arbitrates resources among all the applications in the 

system. The per-application ApplicationMaster is a framework 

specific library, engaged with the NodeManager(s) to execute 

and monitor the tasks and it negotiate resources from the 

ResourceManager. 

Hadoop, an implementation of MapReduce, has a 

master slave file system HDFS, which is the underlying, 

support for the MapReduce data processing function. With the 

HDFS, Hadoop can easily realize “computation to the data 
storage migration”, thus greatly improve the computational 
efficiency of the system. MapReduce can deal with huge 

amount of data, especially for data-intensive 

applications.Recognition of biomedical named entity using 

conditional random fields in this paper is a data-intensive 

application in the big data environment, so the Hadoop 

method is a suitable method.  

 

Virtual machine instances are usually used in a public 

cloud to run Hadoop applications. The CPU instructions and 

memory space within a virtual machine need to be translated 

and mapped to its physical machine host. Therefore, this 

intermediate operation degrades the efficiency of running 

Hadoop jobs  and deploy them on physical machines directly. 

Meanwhile running Hadoop applications on a public cloud can 

be enabled by virtual machine templates and more execution 

nodes can be instantiated. Therefore, the scalability capacity 

will be much better, but this is not the focus of this paper.  

 

C. MRCRF implementation 

 

 MRCRF is a combination of LBFGS and Virterbi 

algorithms where the dataset is divided into different chunks 

and the infrequent items are removed and merge the resultant 

from different chucks into single. Frequent item set mining is 

the process under these process and the non duplicate record 

means the not highly refereed or the biomedical field not been 

discussed or the documents not available for particular disease 

or molecular combination etc., all over the system.To analyze 

the speedup of IMRCRF in a more efficient way, a local 

cluster with less interaction with the virtualization hypervisor 

reveals the real performance of Hadoop jobs. A document of 

100000 records uploaded respectively, the dataset is divided 

into different chunks for mapreduce process. Minimum four 

chucks are used to achieve the better performance. 

 

D. PARAMETERS FOR EVALUATION 

 

 

The performance for proposed methods can 

be evaluated by using the following parameters. Parameters 

which are considered for evaluating the experiments are: 

 

i. Minimum support  

ii. Scalability  

 

i. Minimum Support Count 

 

Minimum support count plays the important role in mining 

frequent itemsets. When we increase the minimum support 

threshold the running time of the proposed algorithm reduces. 

A small minimum support slows down the performance of the 

evaluated algorithms. This is because an increasing number of 

items satisfy the small minimum support when the minsupport 

is decreased; it takes an increased amount of time to process 

the large number of items. 

 

 Fig 4 Execution time of four different minimum support counts. 

 

 

ii. Scalability 

 

In this experiment, we evaluate the scalability of the proposed 

algorithm when the size of input dataset grows dramatically. 

The parallel mining process is slowed down by the excessive 

data amount that has to be scanned twice. The increased 

dataset leads to a long scanning time. An output of the second 

MapReduce job are distributed and stored in intermediate files 

based on the length of itemset; these files are accessed by the 

third MapReduce job as an input. Further, the decomposed 

results are written into these external files. In summary, the 

scalability of the proposed algorithm is higher when it  

comesto parallel mining of an enormous amount of data.  

 

 
Fig 5 Running time of different sized datasets. 
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VIII.RELATED WORKS 

  

There has been some prior works proposed in the literaturefor 

accelerating CRF. These methods essentially gain acceleration 

by omitting important information of labels and losing 

accuracy. Pal et al. proposed a Sparse Forward Backward 

(SFB) algorithm, in which marginal distribution is compressed 

by approximating the true marginal using Kullback-Leibler 

(KL) divergence [25]. Cohn proposed a Tied Potential (TP) 

algorithm which constrains the labeling considered in each 

feature function, such that the functions can detect only a 

relatively small set of labels [2]. Both of these techniques 

efficiently compute the marginal with significantly reduced 

runtime, resulting in faster training and decoding of CRF. 

Although these methods could reduce computational time 

significantly, they train CRF only on a small data set. In order 

to handle large data, Jeong et al. proposed an efficient 

inference algorithm of CRF for large-scale natural language 

data which unified the SFB and TP approaches [11]. Lavergne 

et al. addressed the issue of training very large CRF, 

containing up to hundreds output labels and several billion 

features. Efficiency stems here from the sparsity induced by 

the use of penalty term [15]. However, none of these works 

described so far explore the idea of accelerating CRF in a 

parallel or distributed setting and thus their performance is 

limited by the resources of a single machine. Given that CRF 

is weak in processing massive data, the idea of parallelization 

is introduced into the algorithms. Xuan-Hieu et al. proposed a 

high-performance training method of CRF on large-scale data 

by using massively parallel computers [38]. In [19], a novel 

distributed training method of CRF is proposed by utilizing 

the clusters built from commodity computers. The method 

employs Message Passing Interface (MPI) and improves the 

time performanceon large datasets. Recently, in [21], an 

efficient parallel inference on structured data with CRF based 

on Graphics Processing Units (GPU) is introduced and it is 

testified that the approach is both practical and economical on 

very large data sets. These methods achieve significant 

reduction in computational time without losing accuracy. 

However, they are not suitable for a distributed cloud 

environment, where usually the communication cost is higher. 

In our approach,we overcome this limitation by a parallel 

implementation of CRF based on MapReduce which is 

suitable for huge data sets [32]. MapReduce is an excellent 

model for distributed computing on large data sets, which was 

introduced by Google in 2004. It is an abstraction that allows 

users to easily create parallel applications while hiding the 

details of data LI ET AL.: HADOOP RECOGNITION OF 

BIOMEDICAL NAMED ENTITY USING CONDITIONAL 

RANDOM FIELDS 3041 distribution, load balancing, and 

fault tolerance. At present, it is popular in text mining of 

various applications, especially natural language processing 

(NLP) [8], [31], [37].Laclavik et al. presented a pattern of 

annotation tool based on the MapReduce architecture to 

process large amount of text data [13]. Lin and Dyer discussed 

the processing method of data intensive text based on 

MapReduce, such as parallelization of EM algorithm and 

HMM model [18]. Palit and Reddy proposed two parallel 

boosting algorithms, i.e., ADABOOST.PL and 

LOGITBOOST.PL, scalable and parallel boosting with 

MapReduce [26]. 
 

IX.CONCLUSION 

 

To solve the scalability and efficiency in the existing parallel 

mining algorithms for frequent itemsets for frequent itemsets, 

we applied the parallel mining of frequent itemsets using 

Frequent Itemset Ultrametric Tree on MapReduce framework. 

We incorporate the Frequent Itemset Ultrametric Tree rather 

than conventional FP trees, thereby achieving compressed 

storage and avoiding the necessity to build conditional pattern 

bases. The proposed algorithm integrates three MapReduce 

jobs to accomplish parallel mining of frequent itemsets. At the 

end of the third MapReduce job all frequent K itemsets are 

generated. To evaluate the performance of the proposed 

MRCRF algorithm on MapReduce framework we use 

synthetic datasets in our experiments. The future research 

direction is the distributed cache technique is used to store the 

intermediate result of each MapReduce job which will 

significantly improves performance of parallel mining of 

frequent itemsets using MRCRF on MapReduce framework. 
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