
 
 
 
 

 

DATA MINING METHODS FOR PREDICTION OF AIR POLLUTION 
  
                                                   

                                                              1Kanageswari S    2Sabari rajan J 

1. Assistant Professor, Department of MCA, Loyola College (Autonomous), Chennai. 

2. Final Year MCA Student, Department of MCA, Loyola College (Autonomous), Chennai. 

 
The paper discusses methods of data mining for prediction of air pollution. Two tasks in such a problem are important: 

generation and selection of the prognostic features, and the final prognostic system of the pollution for the next day. An 

advanced set of features, created on the basis of the atmospheric parameters, is proposed. This set is subject to analysis 

and selection of the most important features from the prediction point of view. Two methods of feature selection are 

compared. One applies a genetic algorithm (a global approach), and the other—a linear method of stepwise fit (a locally 

optimized approach). On the basis of such analysis, two sets of the most predictive features are selected. These sets take 

part in prediction of the atmospheric pollutants PM10, SO2, NO2 and O3. Two approaches to prediction are compared. In 

the first one, the features selected are directly applied to the random forest (RF), which forms an ensemble of decision 

trees. In the second case, intermediate predictors built on the basis of neural networks (the multilayer perceptron, the 

radial basis function and the support vector machine) are used. One applies the genetic algorithm, and the second the 

linear method of stepwise fit. On the basis of such analysis we are able to select the most important features influencing 

the prediction  
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1.  Introduction 
 
An important task in providing the proper quality of our life 

is protection of the environment from air pollution (Bhanu 

and Lin, 2003; Brunelli et al., 2007; Grivas, 2006; Perez 

and Trier, 2001). This problem is strictly associated with 

early prediction of air pollution, concerning the level of 

SO2, NO2, O3 and particulate matters of diameters up to 10 

μm (PM10). Actually, PM is of special importance for a 

European policy (the new European Air Quality Directive 

EC/2008/50) defining restrictions for yearly and 24 h 

average PM10 concentrations. To respect the short term 

limit values defined by these restrictions and diminish 

dangerous concentration levels, emission abatement actions 

have to be planned at least one day in advance. Moreover, 

according to EU directives, public information on the air 

quality status and on the predictable trend for the next days 

should also be provided. Hence, one day ahead forecasting 

is 
 

 

 
 
 
 
needed. The paper will discuss the numerical aspects of 

the air pollution prediction problem, concentrating on the 

methods of data mining used for building the most 

accurate model of prediction.  
There are two main tasks to be solved. The first one is 

generation of the best prognostic features influencing the 

prediction, and the second—building the structure of the 

predicting system which provides the most accurate 

forecast. There are a number of papers devoted to this 

problem (Bhanu and Lin, 2003; Brunelli et al., 2007; 

Grivas, 2006; Agirre-Basurko et al., 2006; Mesin et al., 

2010). However, most of them take into account only 

primary atmospheric variables (temperature, wind, 

humidity, etc.), on the basis of which the forecast is made. 

The derivatives of these variables, like the gradient, the 

estimated trend of their changes, the forecast made on the 

basis of such trends, etc., have not been used up to now, 

although their application might improve the quality of 

prediction. On the other hand, including all of them in the 

set of features increases the size of input attributes 
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and may lead to decreasing the generalization ability the state of pollution following from the previous day. 
 

of the prognostic system. Therefore, special methods These primary variables form a natural set of parameters 
 

of detection of the most important factors influencing on the basis of which the secondary set, well associated 
 

the prognosis are necessary. This task is known as the with prediction of the pollution level on the next day, will 
 

feature selection problem (Guyon and Elisseeff, 2003; Tan be formed. This selected set of features may be created 
 

et al., 2006).   in a different way, using known mathematical operations, 
 

 Various sets of potential features might be formed such as the derivative, the gradient, estimation of the trend 
 

from the parameters measured by meteorological stations of their change, extreme values, etc. 
 

(temperature,  wind,  humidity,  insolation) at different Another aspect that should be considered is the 
 

hours of the day.  The contents of these sets should be dependence of the pollution level on the season of the 
 

analyzed to detect the features which are most important year and the type of day. Generally, weekdays would 
 

from the prediction point of view (Siwek et al., 2011; have more pollution in the air than weekends. The same 
 

Osowski et al., 2009).  In this paper, an analysis and is true in the case of seasons, since a higher level of 
 

comparison of two approaches to the feature selection will pollution is observed in winter. Table 1 presents some 
 

be presented. One applies a genetic algorithm (nonlinear comparative statistical results of PM10 pollution (mean 
 

approach) and the other—a linear method of stepwise fit. values and standard deviations) corresponding to different 
 

The former represents a global and the latter  a local seasons and types of days in Warsaw within the years 
 

optimization method. Both the approaches determine the 2001–2014.  This fact was taken into account in the 
 

contents of the sets of input variables, treated as the most model by introducing additional features represented by 
 

influential features in the prediction process. Because of binary coded types of day and season of the year. As a 
 

different principles of operation the contents of both the result of such extension, the set of the potential features 
 

sets are usually not the same.   considered may be quite large and may contain more than 
 

 The results of feature selection provide the input fifty variables.    
 

information to the system responsible for predicting the      
 

average level of air pollution on the next day.   Two Table 1. Dependence of PM10 pollution on the season of the  

different systems of prediction will be studied here. In  

   3  
 

the first one, the features selected are applied to the 
year and the type of day (in µg/m ). 

 

 Weekdays Weekends and holidays 
 

random forest (RF) of decision trees, which performs 
Spring 33.89±18.05 32.54±19.20 

 
 

two functions at the same time: regression (made by the  
 

individual decision trees) and integration (averaging the 
Summer 27.83±8.99 23.42±8.18  

 

Autumn 36.39±17.67 31.03±14.44  
 

results of outputs of many decision trees). 
  

 

 

Winter 41.97±33.72 37.82±24.81 
 

 

 In the second approach, the features selected create  
 

      
 

the  inputs  to  the  individual predictors,  built  on  the On the basis of our experience in this field, various 
 

basis  of  neural networks: the  multilayer perceptron descriptors created in a different way are generated. The 
 

(MLP), the radial basis function (RBF) network and the first subset is composed of environmental parameters 
 

support vector machine (SVM) of the Gaussian kernel. forecast for the next day: the 24-hour average value of the 
 

The universal approximation ability of these networks temperature, wind speed and direction, humidity, pressure 
 

(Haykin, 2000; Scholkopf and Smola, 2002) will be and insolation.    
 

exploited in this approach. All of them have the reputation The next one is formed from the known past day 
 

of very good universal approximators. Their results are parameters: the average, maximum and minimum values 
 

combined together in an ensemble providing the final of temperature and pressure, the past (already known) 
 

prognosis of an increased accuracy. The numerical results average and maximum pollution corresponding to the 
 

of prediction of different air pollutants (PM10, SO2, NO2 previous day, the linear trend of hourly pollution, the 
 

and O3) will be presented and discussed.  linear prediction of the pollution for the forecast day made 
 

    on the basis of this trend, the 2-element binary code of the 
 

2.  Potential set of features 
 season of the year (winter, spring, summer and autumn) 

 

 
and the binary code of the type of day (weekdays and  

    
 

To build a numerical predictive model of any process weekends).     
 

it is necessary to define the set of input features (also Additionally, taking into account the influence of the 
 

called explanatory variables) on the basis of which the previous day pollution on the level of future pollution on 
 

forecasting will be made (Sumi et al., 2012). This choice the next day, selected hourly values of pollution of the 
 

is made based a detailed analysis of the problem. It previous day are also added.    
 

is known that the factors influencing the pollution level As a result, the set of potential features containing 
 

on the next day include atmospheric variables, such as many variables is created. Not all features are equally 
 

temperature, wind, humidity, pressure, insolation and also important in forecasting, hence detection of the most 
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influential factors is needed. This will be done in our 

work by using the genetic algorithm (Vafaie and De 

Jong, 1992; Bhanu and Lin, 2003) and the stepwise 

linear fit applying the backward and forward selection of 

variables (Guyon and Elisseeff, 2003; Matlab, 2014). 

 

3.  Feature selection using the GA 
 
In feature selection by using the genetic algorithm (GA), 

the notion of the binary chromosome, representing the 

selected feature set, is used (Vafaie and De Jong, 1992). 

In this approach, the chromosome component value of 

one represents inclusion of the particular feature in the 

input variable set and the value of zero—deletion of the 

particular feature from the actual set. The GA consists of 

selecting parents for reproduction, performing crossover 

with the parents, and applying the operation of mutation 

to the bits representing children (Goldberg, 2013; Cloete 

and Zurada, 2000). 
 
 
 

START 

 
Initial population 

of features 

 
Assessment of population on 

the validation data (fitness 

function) 
 

Yes 
Termination  
conditions 

 

No   
Selection of parents 

 
 

Crossover operation 
 
 

Mutation 

 
Learning of SVM 

STOP 
networks 

 
 
 

 
Fig. 1. Illustration of the genetic system of feature selection. 

 
Each chromosome is associated with the input vector x 

of the components used as the explanatory variables to the 

predictor. Vector x is composed of only the features 

represented by the value one in the chromosome. The zero 

value of the chromosome component means the lack of such 

a feature in the input vector x. The predictor is 

 
trained on the learning data set and then tested on the 

validation data. The testing error function defined for the 

validation data forms a basis for the definition of the fitness 

function. The fitness is defined here as an error function 

taken with a negative sign. The error function is the sum of 

squares of differences between the real and predicted values 

of pollution for the days taking part in validation. The 

genetic algorithm maximizes the value of the fitness 

function (equivalent to minimization of the error function) 

by performing the subsequent operations of selection of 

parents, the crossover among the parents and the mutation. 

Figure 1 presents the scheme of genetic operations used in 

our application for feature selection. 

 

4.  Stepwise Þt of feature selection 
 
Besides the genetic approach, a traditional linear method, 

generally known as the stepwise linear fit (Sprent and 

Smeeton, 2007; Matlab, 2014; Zhang, 2009), is also used. It 

is a method based on successive linear regression, in which 

the operation of adding and removing the candidate features 

used as the input attributes to the linear model of the 

prediction is performed. In general, two types of operations 

are made within this process: 
 
• forward selection, usually starting with no variables 

in the model, testing the significance of addition of 

each variable, adding the variable which most 

improves the model, and repeating this process until 

none of the variables improves the designed model 

according to the assumed criterion;  
 
• backward elimination, starting with some candidate set 

of variables, testing the deletion of each variable by 

using a chosen criterion of the model quality, deleting 

the variable which improves the model to the highest 

extent by being deleted, and repeating this process 

until no further improvement is possible.  
 
In practice, both operations interlace each other. At each 

stage of the process, after a new variable is added, a test 

is made to check if some variables from the actual set 

can be deleted without increasing the error of regression. 

The procedure terminates when the measure of the model 

quality is (locally) maximized, or when the actual 

improvement is below some assumed tolerance value. 
 

The impact of the actually investigated feature on 

the modeled process is measured through the value of its 

coefficient in linear regression and its statistical change 

in the process of adding and removing the next features. 

In each step of adding or removing the particular feature, 

the F-statistic, is determined, on the basis of which the 

decision of leaving or removing the given feature from 

the set is made.  
Entering and removing the particular variable from 

the actual feature set is controlled by two parameters: 
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penter and premove (Sprent and Smeeton, 2007). The of all neurons until the network produces the desired 
 

parameter penter specifies the maximum p-value for a output within a given tolerance. The procedure is repeated 
 

variable to be recommended for adding to the model. over the entire training set. Learning is just reduced 
 

The parameter premove specifies the minimum p-value to the minimization of the Euclidean error measure over 
 

for  a  variable  to  be  removed  from  the  set. The this set.  The most effective learning approach applies 
 

procedure is stopped when adding or removing any feature gradient information and uses second order optimization 
 

does not lead to increasing the accuracy of the linear algorithms, like Levenberg–Marquard or the conjugate 
 

model. Contrary to the genetic algorithm, application of gradient. The gradient vector in the multilayer network is 
 

stepwise fit provides only the local optimality of solution. computed using the backpropagation algorithm (Haykin, 
 

However, in spite of that, this method has a reputation 2000).      
 

of being highly efficient in practical applications 

 (Zhang, Radial  basis  function  networks  are  systems 
 

2009).  performing   the role of local approximation 
 

   (Haykin,  2000). The  structure  of  the  network  is 
 

5.  Predicting systems  similar to the MLP, except the activation function, which 
 

The features selected in the previous steps are used as 
is Gaussian.  Its main advantage is great simplification 

 

of the learning algorithm following from association 
 

the input attributes to the predicting systems. Predictors of the network parameters with the distribution of the 
 

of very high efficiency were applied in the work. One learning data points in the multidimensional space. RBF 
 

of such solutions is the random forest of decision trees networks implement a nonlinear transformation of the 
 

as well as neural networks, having the reputation of the data from the input space to a high dimensional space. 
 

best universal approximators: the MLP, RBF and SVM The superposition of the hidden neuron signals with 
 

(Haykin, 2000; Siwek et al., 2010).  They act in an proper weights  helps  to obtain an  approximation of 
 

independent way on the same data sets, and their results multidimensional data with a desired accuracy.  Each 
 

are fused into the final prognosis.  output neuron of the RBF network performs a simple 
 

   weighted summing operation,    
  

5.1. Individual predictors. The first system used for 

prediction is a random forest of decision trees developed by 

Breiman (2001). The RF is a typical ensemble learning 

method for classification and regression applying 

simultaneously many decision trees. The decision trees are 

trained on part of the available data and output either the 

class that is the mode of the classes in the classification 

problem or the mean prediction of the individual trees in 

regression task. The other part of data is used for out-of-bag 

testing the trained ensemble of decision trees.  
Decision trees forming the RF are of multivariate 

form. They use a modified tree learning algorithm that 

selects a random subset of the available features (feature 

bagging). Thanks to this the correlation of the trees is 

reduced. If some features are very strong predictors for the 

target variable, these features will be selected in many of 

the trees, causing them to become correlated. A random 
choice of variables reduces the scale of this problem. 

√ 
Typically, for a dataset with N features, N features are used 
in each split. Moreover, each decision tree is trained on a 
different set of randomly chosen observations.  

The MLP is a typical multilayer network structure 

applying sigmoidal neurons (Haykin, 2000; Cloete and 

Zurada, 2000). The information put to the input of the 

network is processed locally in each unit by computing the 

dot product between the corresponding input vector and the 

weighting vector of the neuron. Before training, the weights 

are initialized randomly. Training the network to produce a 

desired output vector when presented with an input vector 

involves systematically changing the weights 
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K  

y(x) = w0 +wj φj (x), (1) 
j=1  

 
where the nonlinear activation functions φj (x) are Gaussian. 

The learning problem of the RBF network is split into two 

stages. The first one is the choice of the number of hidden 

units representing the Gaussian nonlinear functions and 

adaptation of parameters of these functions (centers and 

widths). These problems are solved through clusterization 

of the input data and association of cluster centers with the 

centers of the Gaussian function. In the second step, the 

synaptic weights of the linear output neurons are adapted by 

using singular value decomposition. There are also 

algorithms (for example, the orthogonal least square) which 

join both the stages in one common procedure (Haykin, 

2000).  
The support vector machine is another powerful 

neural alike structure developed by Vapnik (Scholkopf 
and Smola, 2002). Solution of the prediction problem 
needs its application in regression mode (SVR). The 
number of hidden units (kernel functions) is 
automatically determined in the learning procedure on 
the basis of training data. The learning of SVR is to 
minimize the weights of the network, while keeping the 
output signals as close as possible to their destination 
values within the predefined tolerance limit ε (Haykin, 
2000; Scholkopf and Smola, 2002). The regularization 
constant C is applied for balancing between the values of 
weights and the prediction error on the learning data. 
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In practice, the learning procedure is composed of two 

stages, the so-called primary and dual tasks. The 

optimization problem is finally transformed to the dual 

problem of maximization of the quadratic function defined 

for a set of Lagrange multipliers. Its solution is relatively 

easy and there are many efficient algorithms leading to a 

global minimum. Details of the learning procedures of SVR 

can be found in many textbooks (e.g., Haykin, 2000; 

Scholkopf and Smola, 2002). To get reliable results of 

learning, the proper choice of hyperparameters: ε (assumed 

tolerance), the width σ of Gaussian functions and C (user 

specified regularization parameter) should be made. Their 

optimal values are usually determined in an introductory 

step of experiments by using a small percentage of learning 

data. 

 
5.2. Final predicting systems. Individual solutions 

corresponding to the three neural networks (the MLP, RBF 

and SVM) are combined with feature sets, selected either by 

the genetic algorithm or stepwise fit. They are trained on the 

learning data and then tested on a separate testing set. The 

results of these predictors are merged together to produce 

the final forecasts of pollution on the next day. The 

weighted average and random forest applied as integrators 

are used in this step. In the weighted average approach the 

results of individual predictors are summed up with the 

weights proportional to the accuracy of the corresponding 

predictor on the learning data. The RF integrator treats the 

results of individual predictors as the input attributes and 

performs the prediction process on these data. This 

approach to prediction of environmental pollution is 

summarized in Fig. 2 (left).  
Another approach investigated in the paper is direct 

application of selected features to the RF, performing the 

role of a predicting and integrating system at the same 

time. This solution is presented in Fig. 2 (right). The 

direct RF system will be supplied by the features 

selected by the GA, stepwise fit and a combined set of 

features chosen by both the methods. 

 
5.3. Experimental setup. In this research both the 

predicting systems were investigated and compared. Their 

performance was checked on the observation data measured 

in Warsaw within the years 2001–2014. The feature 

selection stage was performed in the first stage of 

experiments on a separate set of data, not used further in the 

prediction process. Two selection methods applied results in 

two separate sets of features. On the basis of their contents 

the appropriate features were used in further experiments as 

the input attributes to the three neural predictors (the MLP, 

RBF and SVM) integrated into the final system. In training 

MLP, 12 hidden units were applied. The RBF network 

generated the best results at 300 Gaussian basis functions of 

the width equal to 
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Fig. 2. General diagrams of the investigated predictors in PM10 

prognosis: the ensemble system applying the intermedi-ate 

neural predictors (left) and the direct application of the RF 

in the role of a predictor and an integrator (right). 
 
 
1. The hyperparameters of the SVM were as follows: C = 
100, ε = 0.01 and the unity width of the Gaussian function. 
All of them were selected in the introductory steps of 
experiments.  

Additionally, the selected features were also applied 

directly to the RF predicting system. The RF was 

composed of 100 tress. Four variables in each node were 

used in splitting the data. Three variants were checked: 

(a) the features selected by the GA, (b) those by the 

stepwise fit and (c) their combined set.  
The prediction experiments were performed 10 

times using randomly selected learning and testing 

subsets. Then the average error for the testing data across 

all 10 trials was computed. The same testing data sets 

were used for all individual predictors.  
The results of prediction are compared on the basis 

of their statistics. The following definitions of errors 

were applied; 
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• the root mean squared error (RMS),      temperature; f 15, maximum temperature; f 16, minimum 
 

             temperature; f 17, the 24-hour average pollution; f 18, 
 

   

RMS = 
1 n   

2 
  

(5) 

maximum pollution; f 19, minimum pollution; f 20, the 
 

   

| y(i) − d(i) | . 
 

24-hour average humidity; f 21, maximum humidity; f 22, 
 

   n   
 

      i=1       minimum humidity.     
 

  

The variables y and d used in these definitions 
The other features exploit the hourly linear trend of 

 

  pollution observed on the previous day: f 23, the value 
 

represent the results of prediction and the real values of the linear trend of change in the pollution estimated 
 

of daily mean pollution, respectively. Additionally, on the basis of succeeding hour measurements; f 24, the 
 

the Pearson correlation coefficient R between the real predicted value of the average pollution of the next day 
 

pollutions and their predictions made by our systems will following from this linear trend; f 25, the linear trend 
 

also  be given. Only the errors related to the testing of the change of temperature; f 26, the linear trend of 
 

data not taking part in learning in 10 repetitions of the the change of humidity;  f 27, the predicted value of 
 

calculations will be presented.       the average humidity for the next day following from 
 

             this trend; f 28, the linear trend of the change of the 
 

6. Results of numerical experiments    wind speed. The other 24 features (from f 29 to f 52) 
 

The numerical experiments were performed for different 
corresponded to 24 hourly values of pollution of the 

 

previous day.     
 

air pollutants, including PM10, NO2, SO2 and O3, all       
 

measured in two meteorological stations in Warsaw. The The other two features (f 53 and f 54) represent the 
 

period considered extended from 2001 to 2014. The binary code of the season of the year (winter, 11; spring, 
 

measurements were done every hour and contain the 10; summer, 01; autumn, 00) and the last f 55—the code 
 

pollution level of each pollutant as well as the values of of the type of the day (weekday: 1, weekend: 0). The 
 

the basic meteorological parameters (temperature, speed normalization of data was made by dividing the real values 
 

and direction of wind, humidity and insolation). Around of the particular features by their mean.   
 

20% of randomly chosen data from the database of the The randomly selected 20% of the data set was 
 

years 2004–2013 were used in the first stage of feature used in the feature selection process to discover the input 
 

generation and selection. The remaining 80% were used variables having the highest impact on the prognosed 
 

only in the predicting experiments (learning and testing average  values  of  pollution  on  the  next  day. The 
 

phases). The data of the year 2014 were left for only stepwise fit and genetic algorithm were used in this stage. 
 

on-line prediction in the last step of the experiments.  Additionally (for comparison purposes), the correlation of 
 

             the single feature with the forecast value of the PM10 level 
 

6.1.  Feature generation and selection.   The first was also checked. The stepwise fit method was applied at 
 

results of experiments are related to the PM10 pollution. the values of penter = 0.06 and premove = 0.08. They 
 

A set of pairs (x, d), x representing the potential input were chosen as the result of introductory experiments 
 

vector to the neural predictor and d the daily average by setting their different values and choosing the ones 
 

of the PM10 pollution, is created. The vector x is providing the best results of prediction on the learning 
 

composed of selected normalized features created from data. The following parameters of genetic operations were 
 

the meteorological data.        used in the experiments:  the mutation probability 2%, 
 

  The following potential features were defined on probability of crossover 0.8, the roulette rule in selection, 
 

the basis of the 24-hour average and also the minimum population of chromosomes equal to 70, the initial random 
 

and maximum values of the meteorological parameters choice of zero or one for chromosome elements in all 
 

prognosed for the next day:  f 1, average temperature; populations. This choice of parameters was preceded by 
 

f 2, minimum temperature; f 3, maximum temperature; some introductory experiments, aimed at getting the best 
 

f 4,  average humidity;  f 5,  minimum humidity; f 6, fit of the predicted results to the real data.   
 

maximum humidity; f 7, mean insolation; f 8, average        The results of application of these two dedicated 
 

wind speed in x coordinate; f 9, minimum wind speed in selection procedures were compared with simple checking 
 

x coordinate; f 10, maximum wind speed in x coordinate; of the correlation of the particular feature with the average 
 

f 11, average wind speed in y coordinate; f 12, minimum value of pollution for the forecast day.   
 

wind speed in y coordinate; f 13, maximum wind speed        After selection of the most important features, the 
 

in y coordinate. The forecast values were taken from the main  experiments of  prediction using  the  remaining 
 

database of the Interdisciplinary Center for Mathematical 80% of data were performed. In these and all further 
 

and Computational Modeling (ICM) in Warsaw.   experiments, one third of these data were left for testing 
 

  The next features were based on the historical data only, while the remaining data were used for training the 
 

from the previous day. They include f 14, average predictors.      
  

Special Issue 19      171 © IJARBEST PUBLICATIONS



 

Data mining methods for prediction of air pollution 473 

 
In application of the neural predictors, the training 

data set was split into three separate parts, each one used 

to train only one of the predictors applied: the MLP, 

RBF or Gaussian kernel SVR. However, the testing set 

was common to all trained predictors. The experiments 

were repeated 10 times at a random choice of training 

and testing data. 

 
6.2. Results of experiments for PM10 predic-tion. The 

first numerical experiments are presented for prediction of 

PM10, the pollutant which is extremely important because 

of its direct impact on human health via inhalation. 

Application of all features resulted in very high errors. The 

best results corresponded to RF application and the mean 

absolute percentage error (MAPE) was 29.82% in this case. 

The only way to reduce this error is to reduce the number of 

features by applying the proper selection procedure from 

full set of 55 features.  
Table 2 presents the sets of features selected either 

by the GA or by the stepwise fit. Column 1 shows the 

notation of selected features. Only 24 (out of 55) features 

were selected by any of these two methods. The selected 

variables (presented in columns 2 and 4) are denoted by 

one. The zero value in any of these two columns means 

no selection of the feature by the particular selection 

method. In the case of stepwise fit the p-values of the t-

test (Sprent and Smeeton, 2007) are also depicted. If the 

p-value of the particular feature was below the assumed 

threshold of 0.06, the feature was treated as significant 

(selected for prediction and denoted by 1 in the second 

column). As can be seen, the stepwise fit selected 19 

features and the same population of features was created 

by the GA. However, only 14 features were commonly 

selected by both the methods. In the last column of the 

table the values of the correlation coefficient of the 

pollution level with the feature selected either by the 

genetic algorithm or the stepwise fit are shown.  
In most cases the values of the correlation 

coefficients are not compatible with the selected set of 

features. This is a confirmation of the observation that a 

simple correlation principle is not a good choice for the 

feature selection in prediction problems.  
The next task of experiments was predicting the 

mean value of PM10 for the next day with application of 

the features selected by the stepwise fit and by the 

genetic approach. The statistical results of prediction for 

each selection method and the predictors applied are 

given in Tables 3 and 4. All of them refer to the same 

data set not taking part in learning (approximately one 

third of the population of data taking part in the 

prediction experiments). The row denoted by RF refers 

to the direct application of the RF working 

simultaneously as the predictor and the integrator.  
The next rows correspond to the application of 

individual neural predictors and their integration using 

 
 
Table 2. Sets of features selected as the best by the stepwise fit 

and genetic approaches in the PM10 prediction prob-

lem. 
 

Feature Stepwise fit p-value Genetic Correlation 
 selection  selection Coefficient 
f 17 1 0 1 0.5998 
f 18 1 0.0166 0 0.5234 
f 19 1 0.0594 1 0.5524 
f 1 1 0.0232 1 -0.2197 
f 2 1 0 1 -0.2826 
f 3 1 0 1 -0.1628 
f 4 0 0.4828 1 -0.0227 
f 5 0 0.5181 1 0.0105 
f 6 1 0 0 -0.0789 
f 27 1 0 1 0.0032 
f 24 0 0.1460 1 -0.0216 
f 7 1 0.0145 1 -0.0812 
f 9 1 0 1 0.2938 
f 10 1 0.0030 1 -0.2928 
f 11 1 0.0193 0 0.0144 
f 12 1 0.0003 1 0.3073 
f 13 1 0.0001 1 -0.2919 
f 29 1 0 1 0.6696 
f 32 1 0.0002 0 0.5938 
f 51 0 0.9733 1 0.3615 
f 52 1 0.0001 0 0.3521 
f 53 1 0 1 0.0560 
f 54 0 0.1447 1 0.1521 
f 55 1 0.0060 1 0.1598 

 

 
weighted averaging (w avg) and application of the RF 

for fusion (RF fusion). In the weighted average case 

three individual results of neural networks create the 

input signal to the integrator. The weighted averaging 

denoted by w avg is defined by 
 

3  

y(i) =wj zj (i), (6) 
j=1  

 
where zj (i) represents the pollution value for the i-th day 

predicted by the j-th predictor and wj is the weight 

adjusted according to its relative accuracy with 
application of the bilinear formula (Osowski et al., 
2009). According to this formula the predictors of higher 
accuracy have higher impact on the final forecast.  

It can be seen that in both feature selection methods 

the prediction accuracy is increased by an ensemble. 

However, the direct application of selected features to the 

RF integrator resulted in a better average accuracy (17.83% 

of the MAPE in comparison with the best result of 22.73% 

in the weighted average fusion). In this best case, the 

standard deviation of the MAPE results in 10 runs was 

1.67%. Another observation is that the weighted average 

method of integrating three results of individual 
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Table 3. Quality measures of the RF, MLP, RBF, SVM and en- 
value of correlation between the predicted and real values 

 

of pollution levels).  However, the results are slightly  

 semble predictions of PM10 with application of the ge-  

 

worse than in the previous cases. Increasing the number  

 netic algorithm.    
 

    

of input signals to the predictor by combining the unique 
 

  MAPE MAE RMS MAX R  

  

features chosen by the genetic algorithm and stepwise fit 
 

  % µg/m
3 µg/m

3 %  
 

 RF 17.92 5.405 8.36 134.17 0.924 together did not improve the performance of the systems. 
 

 

The obtained results are also compared to the naïve 
 

MLP 25.43 7.624 10.42 136.26 0.882  

method of prediction (Tan et al., 2006).  The numerical 
 

RBF 26.37 8.067 13.83 181.90 0.822 
 

SVM 23.57 7.216 10.83 168.21 0.872 experiments showed absolute superiority of our approach. 
 

w avg 22.68 6.979 10.35 150.06 0.885 The improvement of results related to the MAPE was 
 

RF fusion 23.36 7.269 11.39 116.80 0.858 more than three times. 
 

       Figure 3 presents the estimated and real distribution 
 

Table 4. Quality measures of the RF, MLP, RBF, SVM and en- 
of pollution for the tested days in a graphical way. They 

 

correspond to the best method checked in investigations.  

 

semble predictions of PM10 with application of the  

 
In most cases the results of an automatic predicting system  

 
stepwise fit.     

 

     
are close to the real values, preserving well the trend for  

  MAPE MAE RMS MAX R  

  

most days.  The instantaneous prediction errors defined 
 

  % µg/m3 µg/m3 %  
 

 
RF 17.83 5.381 8.39 142.11 0.924 as the difference between the real and estimated values, 

 

 

shown in the lower subimage of Fig. 3, confirm limited  

MLP 27.11 8.240 12.78 143.12 0.822  

values of mispredictions. 
 

RBF 26.64 8.526 16.81 204.14 0.783  

    
 

SVM 23.66 7.109 12.82 179.31 0.816     
 

w avg 22.73 7.114 10.95 159.88 0.869     
 

RF fusion 23.04 7.277 11.77 133.97 0.847     
 

 
 
neural predictors was better than integration made by the 

RF. 

 
Table 5. Quality measures of an ensemble of predictors of 

PM10 at fusing the genetic algorithm and stepwise fit  
selection results.    

 MAPE MAE RMS MAX R 
 % µg/m

3 µg/m
3 %  

RF 18.87 5.66 8.67 149.07 0.918 
w avg 22.39 6.944 10.39 222.91 0.883 
RF fusion 23.42 7.369 12.38 156.83 0.835 

 
The features resulting from the stepwise fit and the 

genetic algorithm were merged in the last step. In the first 

approach they were input directly to the random forest, 

performing the role of predictors and integrators (the results 

denoted in the tables by RF). In the second approach the 

results of three neural predictors supplied by the features 

selected either by the genetic or by stepwise fit were 

combined together. In the latter case six series of prediction 

results taking part in an integration were used.  
The results of such data processing are depicted in 

Table 5. The row denoted as RF presents the results of 

the direct application of the merged features to the RF 

network and the next rows—the results of weighted 

average and RF integration of six predictions made by 

neural networks.  
As can be seen, the direct application of all selected 

features as an input to the RF also generated the most 

accurate results (smaller prediction errors and a higher 

 
 
 
 
 
 
 
 
 
 
Fig. 3. Estimated and real distribution of PM10 pollution in 

µg/m
3
 (top) and the prediction error (bottom) for the 

days taking part in testing. 
 

Figure 4 presents the histogram of the testing errors 
for PM10. As can be seen, only a small number of 

samples were predicted with the errors above 50 μg/m
3
. 

The curve resembles the normal distribution of the center 
located at zero.  

The presented results of experiments were obtained in 

10 runs using the data arranged in a random way. This was 

done to assess the prediction properties of the system in the 

most objective way. The next tests were made on a separate 

data set corresponding to the year 2014, arranged 

chronologically by using the previously trained predicting 

systems. The prediction of the daily mean pollution for the 

next day was done on-line, applying the data of the previous 

days and using the forecast atmospheric parameters. No 

repetition of experiments was applied in this case. The best 

results of the quality measures are 
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Fig. 4. Histogram of percentage prediction errors for the testing 

data of PM10 not taking part in learning. 
 
 
presented in Table 6. The errors are on a similar level as in 

the best results in the previous experiments and fall inside 

the range of one standard deviation. This means that the 

developed system is able to work on-line in forecasting the 

pollution level from day to day with satisfactory accuracy. 
 
 
Table 6. Quality measures of an ensemble of predictors of PM10 at 

fusing the genetic algorithm and stepwise fit selection 

results in on-line testing for the data of 2014. 
 MAPE MAE RMS MAX R 
 % µg/m

3 µg/m
3 %  

RF 19.96 6.04 9.17 138.42 0.933 
w avg 23.93 7.44 11.13 172.81 0.885 
RF fusion 23.64 7.59 11.81 147.20 0.872 

 
It is interesting to compare the proposed method with 

the solutions reported by other authors. Unfortunately, there 

is no standard database available on Internet. Therefore, the 

comparison is made for different data sets. An objective 

interpretation of this comparison needs to take this into 

account. For example, Grivas (2006) reported the 

correlation coefficient between the predicted and real values 

of pollution, changing from 0.70 to 0.82 (depending on the 

year). Our best result is 0.92.  
Most papers do not declare the values of the MAPE, 

the basic universal measure of prediction quality, which 

is independent of the level of pollution in the 

investigated region. Instead, they concentrate on the 

MAE. The relation of the MAE to the mean of PM10 

reported by Grivas (2006) was changing from 0.213 to 

0.255. In our case this ratio was 0.138. 

 
feature selection were applied. Each algorithm selected a 

limited number of them.  
In the case of SO2 the genetic algorithm chose 13 

features (f 1, f 2, f 3, f 6, f 7, f 8, f 11, f 12, f 17, f 18, f 23, 

f 27, f 30) while stepwise fit only 12 (f 1, f 2, f 3, f 7, f 11, 

f 18, f 19, f 23, f 27, f 29, f 41, f 47).  
According to the genetic algorithm, the most 

important features for NO2 prediction included f 1, f 2,  
f 3, f 7, f 8, f 9, f 12, f 16, f 18, f 19, f 22, f 23, f 24, f 27 and f 

50 (15 features) and according to stepwise fit the set of f 1, f 

2, f 6, f 7, f 8, f 9, f 12, f 13, f 16, f 18, f 19, f 23,  

f 24, f 27, f 28 and f 50 was selected (16 features).   
In the case of O3 the optimal set of features 

according to the genetic algorithm contained f 2, f 3,  
f 4, f 8, f 9, f 10, f 11, f 12, f 14, f 15, f 16, f 19, f 23,   
f 24, f 27, f 30, f 35 and f 42 (18 features). Stepwise fit   
also selected 18 features (f 1, f 2, f 3, f 7, f 8, f 9, f 10, 
f 11, f 14, f 15, f 16, f 17, f 19, f 23, f 24, f 27, f 30,  
f 34). The number and contents of the selected features 

were slightly different for each pollutant and the 

selection method applied.  
The selected feature sets were used as the input 

attributes to the predicting systems and then took part in 

the numerical experiments for predicting the daily 

average pollution level of each pollutant. Tables 7 and 8 

show the quality measures (MAPE, MAE, RMS, MAX 

and R) characterizing the prediction quality for each 

pollutant with application of the genetic and stepwise fit 

algorithms. The results refer to the testing data not taking 

part in learning (approximately one third of the extracted 

population of data) and present the average of 10 runs of 

the prediction processes.  
In all cases better results were obtained in the direct 

application of the selected features to the RF. Similarly 

to the PM10 case, the results of predictions related to all 

three neural predictors supplied by the feature sets 

selected by both the genetic and the stepwise fit 

algorithms (six individual solutions of predictors) were 

combined together. The results of such integration for 

these three pollutants with application of the weighted 

average and RF are depicted in Table 9.  
The results show that increasing the number of 

input signals to predictors leads to a decrease in the 

prediction accuracy. This was observed for all pollutants. 

The histograms presenting the statistical distribution of 

prediction errors for each pollutant (Fig. 5) confirmed 

the good quality of prediction. Most errors are located 

close to zero. Only single cases were forecast with higher 

error values.  
Our best results for all pollutants were compared  

6.3. Results of experiments for other air pollutants.           the standard ARX linear model implemented in   
Similar experiments were conducted for other pollutants: 

SO2, NO2 and O3. In the first phase of experiments the 

significant features were selected from the whole set of 55 

elements. The genetic algorithm and the stepwise fit of 

 
Matlab (Matlab, 2014). The comparison was made on the 

same data sets and in the same organization of calculations 

as in our basic models. The optimal parameters of ARX 

were chosen after a series of introductory experiments: 
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paper have confirmed the superiority of such an approach 
 

for all pollutants considered.    
 

     
 

 

The developed system is already under tests at the  

       
 

           ´  
 

           
 

National Center for Nuclear Research (NCBJ) in Swierk, 
 

      Poland, and is used to predict the next day PM10 pollution 
 

       in Warsaw. The observed average accuracy of prediction 
 

       made in this institution in the last year is on a similar level 
 

       as the results presented in the paper.   
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