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Abstract— 

The control of multilegged 

animal walking is a neuromechanical 

process, and to achieve this in an 

adaptive and energy efficient way is a 
difficult and challenging problem. This 
is due to the fact that this process needs 

in real time: 1) to coordinate very many 

degrees of freedom of jointed legs; 2) to 

generate the proper leg stiffness (i.e., 

compliance); and 3) to determine joint 

angles that give rise to particular 

positions at the endpoints of the legs. To 

tackle this problem for a robotic 

application, here we present a 

neuromechanical controller coupled 

with sensorimotor learning. The 

controller consists of a modular neural 

network for coordinating 18 joints and 

several virtual agonist–antagonist 

muscle mechanisms (VAAMs) for 

variable compliant joint motions. In 

addition, sensorimotor learning, 

including forward models and dual-rate 

learning processes, is introduced for 

predicting foot force feedback and for 

online tuning the VAAMs’ stiffness 
parameters. The control and learning 

mechanisms enable the hexapod robot 

advanced mobility sensor driven-

walking device (AMOS) to achieve 

variable compliant walking that 

accommodates different gaits and 

surfaces. As a consequence, AMOS can 

perform more energy efficient walking, 
compared to other small legged robots. 

In addition, this paper also shows that 

the tight combination of neural control 

with tunable muscle-like functions, 

guided by sensory feedback and coupled 

with sensorimotor learning, is a way 

forward to better  understand and solve 

adaptive coordination problems in 

multilegged locomotion. T
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Index Terms— 

Bio-inspired robot control, legged locomotion, 
muscle model, variable impedance control. 

I. INTRODUCTION  

LEGGED animals are capable of 
adjusting their leg stiffness to accommodate 
surfaces of variable structural properties, 
thereby leading to adaptive and energy 
efficient locomotion. They also tune their leg 
stiffness to accommodate different gaits based 
on energetic cost. Neurophysiological studies 
have revealed that these behaviors arise from 
the interplays between the nervous systems 
and the musculoskeletal structures (i.e., 
muscles and body) of legged animals. These 
neuromechanical interactions govern how 
legged animals achieve adaptive locomotion 
on different surfaces. For example, 
cockroaches rely more on their 
musculoskeletal structures to move over a 
regular surface. But moving over a more 
difficult one, they need to resort to the 
integrations of their nervous systems and 
musculoskeletal structures. As Bernstein 
pointed out, the need to control many degrees 
of freedom (DOFs) is a characteristics of 
neuromechanical systems. In a cockroach 
(e.g., Blaberus discoidalis), for instance, there 
are 220 muscles controlling legs with at least 
19 DOFs that contribute to its locomotion. 
Owing to this, modeling the cooperations 
within and between different functional 
components of neuromechanical systems in 
legged locomotion is a very challenging task 
Along this paradigm, Full and Koditschek 
proposed a specific solution where two types 
of dynamic models (i.e., template and anchor) 
are used to model legged locomotion with 
many DOFs. An anchor is a representative 
model with detailed descriptions of neural 
circuits, muscles, and joints. Whereas, a 
template represents the simplest model of 

locomotion by trimming away the detailed 
descriptions (e.g., muscles and joints) of the 
DOFs. Referring to the template, hexapod 
robots (i.e., robot hexapod (RHex) robots) 
were designed by Saranli et al. Each RHex 
robot having only six DOFs showed 
unprecedented mobility over different 
surfaces. Besides, they can also achieve energy 
efficient locomotion by exploiting passive 
variable compliant legs. For example, leg 
compliance of an RHex robot was manually 
tuned to accommodate its running speeds 
based on energetic cost. The RHex robot is the 
best example for a coordination architecture 
controlling faster movement  (e.g., running) 
where mechanical properties (e.g., leg 
compliance) must be increasingly well tuned 
to adapt to different environments. In such a 
case, more feed-forward and decentralized 
control can suffice, since feedback control may 
not be effective due to noisy sensing. By 
contrast, slower movement (e.g., walking) can 
heavily count on sensing which allows for 
more adaptive movement. Similarly, here 
more feedback and a centralized coordination 
architecture will be utilized to control our 
hexapod robot advanced mobility sensor 
driven-walking device (AMOS) in a 
neuromechanical manner. Moreover, the 
modeling of RHex robots is no more than a 
template, since this template behavior was not 
embedded within a very detailed model (i.e., 
anchor). The anchor model is a representative 
model describing a nervous system, muscles, 
joints, and legs with many DOFs like in 
insects. Templates and anchors are more than 
“simple models” and “complex models.” 
There should be a natural embedding of the 
template behavior within the anchor. 
Therefore, an anchor (i.e., detailed) controller 
for adaptive and energy efficient physical 
robot locomotion that accommodates different 
gaits and surfaces remains an important and 
unresolved problem in a neuromechanical 
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contex. To solve this problem, we propose a 
neuromechanical controller coupled with 
sensorimotor learning for active tuning  of 
passive properties (e.g., stiffness parameters) 
of the muscle-like components driving the 
joints during locomotion. Classical neural 
control  and variable compliance control are 
generalized and integrated into our 
neuromechanical controller consisting of a 
modular neural network (MNN) and several 
virtual agonist–antagonist mechanisms 
(VAAMs). The proposed neuromechanical 
controller simplifies and integrates neural 
control and Hill’s muscle model typically 
adopted in theoretical neuromechanical 
models, such that the controller is 
computationally implemented on physical 
legged robots with many DOFs. Such 
integration facilitates more adaptive and 
energy efficient walking on challenging 
surfaces. For instance, the neuromechanical 
controller enables AMOS to achieve more 
energy efficient waking on the challenging 
surfaces , compared to the adaptive neural 
controller. Such energy efficient walking can 
be also achieved by passive or active 
compliance control. Passive compliance 
control is typically regarded as the integration 
of actuators and visco elastic mechanics. Such 
control, however, leads to structural and 
sensory complexities that cause bulky and 
energy-inefficient legged robots with many 
DOFs. By contrast, our neuromechanical 
controller solves these problems by using 
virtual muscle-like mechanisms (i.e., 
VAAMs), which can be applied to variable 
compliance control of small legged robots with 
many DOFs. Moreover, the integration of the 
VAAMs and a proximo-distal gradient results 
in more stable compliant locomotion, 
compared to classical active compliance 
control. Active compliance control typically 
requires force/torque sensing at each joint of 
legged robots and its control parameters are 

often adjusted by hand  or offline learning. The 
parameters have to be relearned or manually 
readjusted when walking on different surfaces. 
Therefore, self-adjusting compliance control 
on a physical legged robot with many DOFs 
remains an important and unsolved problem in 
a context of energy efficient walking on 
different surfaces, which this paper  tries to 
address in a more efficient way. As a result, 
the work enables our hexapod robot AMOS to 
achieve more energy efficient walking [i.e., 
lower costs of transport (COTs),  than other 
small legged robots (less than 8 kg), when 
proper gaits are chosen for walking over 
different surfaces. Christo Ananth et al. [3] 
discussed about a system, GSM based AMR 
has low infrastructure cost and it reduces man 
power. The system is fully automatic, hence 
the probability of error is reduced. The data is 
highly secured and it not only solve the 
problem of traditional meter reading system 
but also provides additional features such as 
power disconnection, reconnection and the 
concept of power management. The database 
stores the current month and also all the 
previous month data for the future use. Hence 
the system saves a lot amount of time and 
energy. Due to the power fluctuations, there 
might be a damage in the home appliances. 
Hence to avoid such damages and to protect 
the appliances, the voltage controlling method 
can be implemented. These surfaces include 
loose surfaces (e.g., fine gravel and coarse 
gravel), an elastic surface (e.g., sponge), and a 
muddy surface (e.g., grassland). This paper is 
an extension. The MNN was developed to only 
generate reactive behaviors and omni 
directional walking. We proposed the muscle 
like mechanisms (i.e., VAAMs) for robotic 
compliant joint control. There, we also 
investigated muscle-like functions and how to 
vary compliant joint motions via the manual 
adjustment of the stiffness parameters of the 
passive elements of the VAAMs, but excluded 
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walking. We integrated the MNN and VAAMs 
into neuromechanical control of energy 
efficient hexapedal walking, in which there is 
only one specific gait with the manual 
adjustment of the stiffness parameters of the 
VAAMs for walking on different surfaces and 
surface classification. The new contributions 
of the work, thus, include the following.  

1) Development of sensorimotor 
learning for self-adjusting the stiffness 
parameters of the VAAMs that adapts 
hexapedal walking to nine insect-like gaits and 
four challenging surfaces.  

2) Combination of the muscle-like 
mechanisms (VAAMs) and sensorimotor 
learning showing a simple but effective way to 
achieve adaptive variable compliant joint 
motions without complex sensory systems and 
(physical) compliant components.  

3) Integration of VAAMs with a 
proximo-distal gradient to remove locomotor 
instabilities under active compliance control.  

4) Neuromechanical control coupled 
with sensorimotor learning providing a way 
forward to model and control adaptive and 
energy efficient legged locomotion with many 
DOFs.  

5) Investigations on adaptive leg 
compliance for different gaits and energy 
efficient walking on different surfaces.  

6) A better understanding of 
interactions between neuromechanical control, 
sensorimotor learning, sensory force feedback, 
and the environment under adaptive 
locomotion. 

II.NEUROMECHANICAL 

CONTROLLER COUPLED WITH 

SENSORIMOTOR LEARNING 

We include the feed-forward and 
feedback pathways into our neuromechanical 
controller. For the feed forward pathways, the 
controller not only consists of feed forward 
control via descending commands (i.e., S, Ni, 
and Oi) from a neural circuit to muscle-like 
components and body 

 

Fig. 1. Neuromechanical control coupled with 
sensorimotor learning applied to the hexapod 
robot AMOS.  

Via neural outputs Ni (i=1,2,...,18), a neural 
circuit activates the muscle-like components 
that generate position commands (i.e., Oi) to 
move the leg joints of AMOS. The legs then 
interact with the environment, which produces 
force feedback (i.e., Fext m,1)( m = 1,2,...,6). 
Besides, six forward models predict expected 
force feedback (i.e., Fp m,1) of the legs based 
on the outputs of the neural network. Using 
Fext m,1 and Fp m,1 as the inputs, 12 dual-rate 
learning processes actively tune 12 stiffness 
parameters (i.e., Kj, j = 7,8,...,17,18) of 
muscle-like components driving 12 joints. 
There are three ways of generating position 
commands Oi driving the joints: feed-forward 
neural control for proximal joints  combining 
feed-forward neural control and tendon-like 
compliance for intermediate joints, and 
tendon-like compliance for distal joints 
Interestingly, these three ways are comparable 
to a proximo-distal gradient mechanics, but 
also includes six forward models  for 
predicting force sensing (i.e., Fp m,1) of the 
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six legs. In the feedback pathway, there is 
force sensing (i.e., Fext m,1) at the end 
effectors of the legs. Using Fp m,1 and Fext 
m,1 as the inputs, 12 dual-rate learning 
processes can actively tune the stiffness 
parameters (i.e., Kj) of the muscle-like 
components driving 12 joints of the legs. This 
leads to variable compliant leg motions over 
different surfaces. Actively tuning mechanical 
properties (e.g., joint stiffness) is an important 
characteristic of animal locomotion.  

For example, the tunable mechanical 
properties of insect legs can help its 
locomotion over rough terrain. In addition to 
neuro mechanical interactions, studies of leg 
muscle architecture and function suggest that a 
proximo-distal gradient of muscle function and 
neural control exists, which reflects different 
control strategies for the join. Following the 
gradient, proximal joints are under feed-
forward neural control, and are rarely sensitive 
to changes in loading during stance. By 
contrast, distal joints are more sensitive to 
loading, and are basically driven by tendons. 
This proximo-distal gradient enhances 
locomotor stability of legged animals on rough 
terrain. Based on the gradient, the contractile 
elements (CEs) and passive elements of the 
VAAMs emulate feed-forward neural control 
and compliance of tendons respectively.  

The proximal joints [i.e., thoraco coxal (TC) 
joints] of the hexapod robot are coordinated 
only by neural outputs. Whereas its distal 
joints [i.e., femur tibia (FTi) joints] are driven 
only by the passive elements emulating the 
compliance of tendons. The experimental 
results show that such a setup enables the 
hexapod robot to achieve more stable walking 
on rough surfaces (e.g., gravels). The setup 
enhances stability of legged robot locomotion 
under active compliance control which 
generally leads to locomotor instabilities. 

 

Fig. 2. MNN. There are three different neuron 
groups: input neuron (S), hidden neurons 
(H1−24), and output neurons (N1−18). The 
input neuron is used to control walking 
patterns of the hexapod robot AMOS. The 
hidden neurons are divided into three modules: 
CPG, PSM, and VRMs, which have different 
functionalities (see texts for details). All 
connection strengths together with bias terms 
are indicated by the small numbers except 
some parameters of the VRMs (a = 1.7246, b 
=− 2.48285, and c =− 1.7246). Delays λL and 
λ between output neurons are set to 48 and 16 
time steps, respectively. Abbreviations are: 
TR(L)1,2,3 = TC joints of the right(left) front, 
middle, hind legs, CR(L)1,2,3 = CTr joints of 
the right(left) front, middle, hind legs, 
FR(L)1,2,3 = FTi joints of the right(left) front, 
middle, hind legs. Abbreviations are: 
R(F,M,H) = right (front, middle, hind) leg, 
L(F,M,H) = left (front, middle, hind) leg. In 
the following, we describe three above 
introduced components of our system. 1) A 
neural circuit which produces the commands 
to coordinate joint motions and to change gaits 
based on energetic cost. 2) Biomechanical 
components consisting of muscle-like 
components and a bio-inspired body. Walking 
systems particularly require an adaptive 
muscle model where its parameters can be 
easily and quickly tuned to achieve proper 
compliant joint motions. 3) Sensorimotor 
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learning which can predict sensory 
consequences of actions and actively tune 
compliance of joint motions; thereby enabling 
walking systems to accommodate different 
gaits and deal with different surfaces. The 
details of each component are described 
below. 

 Neural Circuit: Modular Neural 

Network 

 Our MNN is a biologically-inspired 
hierarchical neural controller. The MNN 
generates signals for interleg and intraleg 
coordination of the six-legged robot AMOS. 
Each leg has a TC joint allowing forward and 
backward motions, a coxa trochanteral (CTr) 
joint allowing elevation and depression 
motions, and an FTi joint allowing extension 
and flexion motions. The MNN consists of a 
central pattern generator(CPG) a phase switch 
module (PSM) and two velocity regulating 
modules (VRMs). All neurons of the MNN are 
modeled as discrete-time, nonspiking neurons. 
The activation Hi of each neuron develops 
according to 

 

where m denotes the number of units, Bi is an 
internal bias term (i.e., stationary input) to 
neuron i, and Wij is the synaptic strength of 
the connection from neuron j to neuron i. The 
output oi of every neuron of the MNN is 
calculated using a hyperbolic tangent (tanh) 
transfer function, i.e., oi = tanh(Hi),∈ [−1,1]. 
The weights Wij are manually designed, 
except weights a, b, and c which are obtained 
by back-propagation learning [see Fig. 2(III)]. 
More details of determining the weights Wij,  
The CPG consists of only two neurons with 
full connectivity.  where B1 and B2 are set to 
0.01. The weights W12 and W21 are given by  

W12(S) = 0.18+S, W21(S) =− 0.18−S     (2) 

 where S ∈ [0.01,0.18] is the modulatory input 
determining the speed of the legs, which 
increases with increasing S. The PSM is a 
generic feed-forward network consisting of 
three hierarchical layers with ten hidden 
neurons (i.e., H3 −H12). The outputs of the 
PSM are projected to the FTi [i.e., 
F(R,L)(1,2,3)] and CTr [i.e., C(R,L)(1,2,3)] 
motor neurons as well as to the neurons H13 
and H14 of the two VRMs. The VRMs are 
feed-forward networks projecting their outputs 
to the TC motor neurons T(R,L)(1,2,3). Delays 
λL and λ between the motor neurons are fixed. 
The outputs N1−18 of the motor neurons are 
used to activate the muscle-like components to 
drive AMOSs legs. Here, we show how 
N1−18 enable the legs to perform a fast wave 
gait.  In addition, nine gaits  are achieved by 
changing the modulatory input S  of the MNN. 
More details of the MNN. 

 Biomechanical Components 

 1) Muscle-Like Component—Virtual 
Agonist–Antagonist Mechanism:  

               The VAAM consists of a pair of 
agonist and antagonist mechanisms. It 
produces active and passive forces using its 
CEs and parallel elements (PEs). A physical 
joint is driven by a VAAM (i.e., M1 and M2). 
Virtual means that the joint, physically driven 
by a standard servo motor, imitates muscle-
like behaviors as if it were driven by a pair of 
physical agonist and antagonist muscles. The 
joint actuation relies on the CEs, while the PEs 
govern joint compliance. The parallel elements 
are modeled as spring-damper systems in 
terms of a Voigt muscle mode.  

The active forces produced by the CEs are 
approximated by the product of the neural 
activity Nj and the activity strengths i(1,2). 
More details of mathematically modeling the 
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PEs and CEs. We apply Euler’s law to the 
rotation of the joint P. The motion equation of 
the joint P is given by 

 

 

 

FIG. 3. VAAM for joint control interacting 
with the ground surface. (a) Physical joint P is 
driven by a VAAM (i.e., M1 andM2) with the 
lengths L1 and L2. The interaction results in 
an external force fext, which drives the joint P 
with radius r via the shank with length L. fext 
is sensed by a force sensor (i.e., O), and f⊥ is 
the amount of fext directly perpendicular to 
the position of the joint P. θ is the rotational 
angle of the joint P relative to the absolute 
frame Z. (b) Agonist and antagonist 
mechanisms consist of contractile and parallel 
elements (CE(1,2) and PE(1,2)). PE(1,2) are 
spring-damper systems producing passive 
forces. CE(1,2) generate active forces 
depending on the neural activity Nj and the 
activity strengths i(1,2) (i.e., i(1,2) ∈[−1,1]). 
The neural activity Nj is one of the outputs 
N1−18 of the MNN.Equation (3) governs the 
angle θ of a physical joint driven by the 
VAAM that is activated by the output Nj (j ∈ 
Z[1,18]) of the MNN. The joint angle θ and 
joint velocity ˙ θ in (3) are not from sensory 

feedback but calculated using fourthorder 
Runge–Kutta. In principle, this bio-inspired 
compliant joint control approach (i.e., the 
VAAM) shares a connection to classical 
impedance control approaches in terms of 
spring-damper based compliance. However, it 
is a biological model where biological muscle 
functions (e.g., brakes) can be easily emulated 
by changing stiffness and damper parameters 
[i.e., K and D in (3). Here, through using 
sensorimotor learning (see Section II-E for 
details), K will be adjusted in an online 
manner while D will be fixed during walking. 
More advantages of the VAAM model are 
described.  

2) Bio-Inspired Body—Hexapod Robot 
AMOS: 

            Here we use a hexapod robot as our 
experimental platform. It has six three-jointed 
legs and each leg emulates the morphology of 
a cockroach leg. Every leg has a TC joint 
allowing forward and backward motions, a 
CTr joint allowing elevation and depression 
motions, and an FTi joint allowing extension 
and flexion motions. Each joint is physically 
driven by a standard servo motor (i.e., HSR-
5990TG). There is a force sensor (i.e., FS 
Series Force Sensor) used for detecting an 
analog force signal at each leg. A current 
sensor, installed inside the body of the 
hexapod robot, is used to measure the 
electrical current supplied to all motors of the 
robot. Here, the current sensor signal is used to 
calculate power consumption during walking. 
The sensory data are transmitted via an RS232 
serial connection to an external PC on which 
the controller is 
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Fig. 4. Hexapod robot AMOS. Its three-jointed 
legs mimic leg morphology of an insect.        
(a) AMOS and its sensors. fc(1−6) are force 
sensors. (b) Outputs O0−18 controlling the 19 
joints of AMOS when receiving analog signals 
fext 1−6, which are detected by the force 
sensors at the legs. Abbreviations are: L(1,2,3) 
= Left (Front, Middle, Hind)leg. R(1,2,3) = 
Right (Front, Middle, Hind) leg. implemented. 
The final motor commands of the controller 
are sent to the robot also via the serial 
connection. 

 Neuromechanical Control: Combining 

Neural Circuit and Biomechanical 

Components  

       The outputs O1−18 ∈ [−1,1] of the 
neuromechanical controller are linearly scaled 
and transmitted to control the positions of the 
standard servo motors driving the 18 joints of 

the hexapod robot  in supplementary material]. 
Note that the command O0 here is set to a 
constant value (i.e., O0 = 0) for controlling the 
backbone joint to the middle position. For joint 
control (i.e., O1−18), different control 
strategies are applied to swing and stance 
phases, like virtual model controllers.  

Swing Phase: When a leg is in swing phases 
(i.e., fext i = 0, i = 1,2,...,5,6), the outputs 
N(i,i+6,i+12) of the MNN are linearly 
transformed into the outputs O(i,i+6,i+12) 
controlling the TC, CTr, and FTi joints. 
O(i,i+6,i+12) satisfy  

 

Note that the last values of the outputs 
O(i,i+6,i+12) of the swing phase are kept and 
transferred to the initial joint angles of the 
following stance phase. This leads to smooth 
switches from swing to stance phases. 

Stance Phase: The TC joint of the leg allowing 
only horizontal motion is not affected by the 
PEs of the VAAM since there is only detection 
of vertical foot force at the end effector of the 
leg. As a consequence, the TC joint is driven 
by the CEs of the VAAM that simulate feed-
forward neural control. By contrast, the CTr 
and FTi joints, contributing to vertical motion 
of the leg, can be influenced by vertical foot 
force. Based on the VAAMs, we test nine 
possible setups (see Table I in supplementary 
material) to control the CTr and FTi joints in a 
physical simulator (i.e., LPZROBOTS 
simulator). The simulation results show that 
the setup S2 leads to coordinated movement 
and stable locomotion with the smallest body 
oscillation. The setup S2 is as follows: each 
TC joint (i.e., proximal joint) is purely 
controlled by the CEs of the VAAM (i.e., pure 
actuation), each CTr joint (i.e., intermediate 
joint) is governed by the CEs and PEs of the 
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VAAM (i.e., combination of actuation and 
compliance), and each FTi joint (i.e., distal 
joint) is driven by the PEs (i.e., PE1 and PE2) 
of the VAAM (i.e., pure compliance) (see 
more details in Fig. 5 of supplementary 
material). Interestingly, this setup also 
complies with a proximo-distal gradient 
revealed by biological studies on three-jointed 
leg locomotion. These studies show that 
proximal joints mainly act as actuation while 
distal joints serve as compliance in legged 
animal locomotion. Such passive compliance 
and active actuation make the VAAM different 
from virtual model control (VMC), which only 
contains a virtual passive elements (e.g., 
spring) attached to the robot. In contrast to 
VMC controllers.  The VAAM not only 
includes virtual passive elements to produce 
passive forces, but also integrates virtual CEs 
that generate active forces driven by neural 
control. The VAAM control is, thus, more 
strongly bio-inspired by integrating neural 
control with muscle-like functions, compared 
to VMC controllers. As a result, the VAAM 
control enables AMOS to not only achieve 
more stable walking under active compliance 
control, but also easily emulate muscle-like 
functions (e.g., brakes and springs). The 
outputs O1−18 of the proposed 
neuromechanical controller are calculated as 
follows. All TC joints are controlled only by 
CE(1,2) of the VAAM. The matrix of the 
outputs of the TC motor neurons is T6×1 = 
[N1,N2,...,N6. Oj is given by (j∈ Z[1,6]) 

 

 

 
The details of (5) can be seen in [21, 
Eq. (A.4)]. Each CTr joint is driven by 
PE(1,2) and CE(1,2) of the VAAM. 
The matrix θ26×1 of the CTr angles is 
the sum of the Hadamard products  

 

 

Fig. 5. Schematic of VMC and VAAM 
control. (a) Virtual model controller  that only 
exploits a virtual passive element (e.g., spring) 
attaching the body to the end effector. (b) 
VAAM controller that uses the virtual CEs and 
passive elements. The controller is based on a 
proximo-distal gradient. The angles θ2m,1 of 
the CTr joints are linearly transformed into 
their output. Oj is given by (j∈) 
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 The details of (7) can be seen in [21, Eq. 
(A.5)]. Each FTi joint is driven only by 
PE(1,2) of the VAAM. The FTi angle matrix 
θ16×1 is the sum of the Hadamard products 
(see [63, Eqs. (13)–(15)]) 

 

 

 The angles θ1m,1 [m ∈ Z[1,6], seeθ16×1 in 
(8)] of the FTi joints can be linearly 
transformed into their outputs Oj (see more 
details in Fig. 5 of supplementary material). Oj 
is given by (j∈ Z)   

 

 

 

Fig. 6. Vertical positions of center of mass of 
the hexapod robot AMOS. The experiments 
are conducted in the physical simulator 
LPZROBOTS. The VAAM control (setup S2, 
see Table I in supplementary material) enables 
AMOS to walk stably (smaller body 
oscillations), compared to VMC. 

    Sensorimotor Learning for Adaptive 

Compliant Joint Motions 

 The adaptive compliant joint motions of 
AMOS are achieved by actively adjusting the 
stiffness parameters K16×1 and K26×1 [see 

(6), (8)] of the passive elements of the 
VAAMs driving the FTi and CTr joints. Here, 
we apply sensorimotor learning for online 
adjusting K16×1 and K26×1 at every time step 

 For each leg, there are 
two dual-rate learning processes and a forward 
model  for the CTr and FTi joints. 

 The forward models use the outputs i.e., 
Om(t)] controlling the TC joints to predict foot 
force signals [i.e., Fpm,1(t), m=1,2,...,5,6] 
Specifically, Fp m,1(t) will gradually increase 
to 1 when Om(t) is decreasing [see Fp 4,1(t) 
and O4(t). Fp m,1(t) is given by  

 

The matrix e6×1(t) of errors between real and 
predicted foot force signals is  

 

 

 

 where Fext 6×1(t) is the matrix of the real foot 
force signals, i.e.,F ext 6×1(t) = fext 1−6(t) 
(see Fig. 4). Fp 6×1(t) is the matrix of 
thepredicted foot force signals, i.e., Fp 6×1(t) 
=fp 1−6(t).For reducing the errors, the 
processes adjust the stiffness parameters [e.g., 
K14,1(t)] of the PEs driving the FTi and CTr 
joints in each leg [see Fig. 7(a)]. Each learning 
process consists of a fast learner and of a slow 
learner. Both learners are modeled as linear 
systems acting in parallel. The fast one learns 
compensating the error more quickly, is 
indicated by a higher learning rate, i.e., B1f > 
B1s. Whereas, the slow one retains previous 
states much better, is indicated by a high 
retention factor, i.e., A1f < A1s. Therefore, the 
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FIG.7. Sensorimotor learning for stiffness of 
the passive elements driving the FTi and CTr 
joints of the AMOSs legs. For each leg, there 
are two dual-rate learning processes for 
adjusting stiffness parameters (e.g., K14,1 and 
K24,1) by using expected and real foot 
forcesignals (e.g., Fp 4,1 and Fext 4,1). The 
expected foot force signal (e.g., Fp 4,1) is 
predicted by a forward model based on an 
output (e.g., O4) controlling the TC joint. Each 
dual-rate learning process consists of a fast 
learner and of a slower learner acting in 
parallel. (a) Dual-rate learning process for 
parameters K1m,1 and K2m,1. K1m,1 and 
K2m,1 (m = 1,2,...,6) are stiffness parameters 

stiffness parameters K1m,1. The parameters of 
the two learners are set as: A1f =0.59, A1s 
=0.992, B1f =0.378, and B1s =0.036. (b) Dual-
rate learning for stiffness parameters K2m,1. 
TThe parameters of the two learners are set as: 

A2f = 0.59, A2s = 0.992, B2f = 
0.882,andB2s=0.084. 

matrix K16×1(t) of stiffness parameters for the FTi 
joints is given by 

where are the outputs of fast 

learners, and  are the outputs of 
slow learners. Note that the value of A1f and 
A1s and B1f and B1s are empirically chosen 
[see all values. Similarly, the matrix K26×1(t) 
of stiffness parameters  for the CTr joints is 
given by 

where    are the outputs of fast 

learners, and  are the outputs of 
slow learners. Note that the value of A2f and 
A2s , and B2f and B2s are empirically chosen. 
Equations (12) and (13) are written in terms of 
time t different from formulated according to 
trial number n. 

III. EXPERIMENTS   

 Sensorimotor Learning for Self-Adjusting 

Stiffness Parameters 

       For each leg, there are two learning 
processes coupled with a forward model  
for adjusting the stiffness parameters (e.g., 
K14,1 and K24,1). At the left front leg, for 
example, there are two outputs (i.e., K2f 
4,1 and K2s 4,1) of fast and slow learners 
acting in parallel, which contribute to the 
stiffness parameter K24,1. One can see 
that the fast one learns K2f 4,1 more 
rapidly, which leads to smaller 
oscillations. By contrast, the slow one 
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retains K2s 4,1 better, thereby leading to 
convergence. This is because the retention 
factor A2f = 0.59 of the fast learner is 
lower than A2s = 0.992 of the slow 
learner. Moreover, the fast learner is more 
sensitive to perturbations (i.e., stance 
phases) after learning  compared to the 
slow learner. This is because the learning 
rate B2f = 0.882 of the fast learner is 
higher than B2s = 0.084 of the slow 
learner. The combination of the slow and 
fast learners enables the stiffness 
parameters (e.g., K24,1) to achieve global 
convergence and local oscillatory stiffness 
response, which lead to stable and 
adaptive compliant hexapedal walking on 
challenging surfaces. Furthermore, the 
stiffness parameters (e.g., K24,1) during 
swing phases 

 

Fig. 8. Sensorimotor learning for adjusting 
stiffness parameter K24,1. Here the gait is fast 
caterpillar (i.e., the modulatory input S =0.10). 
(a) Forward model. The output O4(t) 

controlling the TC joint is applied to predict 
the foot force signal Fp 4,1(t) [see (10)]. (b) 
Contact forces. Fext 4,1(t) and Fp 4,1 are the 
real and predicted contact forces. (c) Learning 
the stiffness parameter K24,1. K24,1 is the 
sum of the outputs (i.e., K2f 4,1 and K2s 4,1) 
of a fast learner and a slow learner using the 
error e4,1 between Fext 4,1 and Fp 4,1. The 
adjustment of stiffness parameter K14,1 
driving the FTi joint in the left front leg (d) 
O10, andO16 are the outputs controlling the 
positions of the CTr and FTi joints in the left 
front leg. Swing phase are higher than the ones 
during stance phases.  Since they (during the 
swing phases) are kept as the stiffness 
parameters from the previous stance phases. 
Note that sensorimotor learning  is not applied 
to adaptively control the joints during swing 
phases, because only feedforward neural 
control [i.e., no stiffness parameters 
K(1,2)m,1,] is used for joint control during 
swing phases. During stance phases, the 
stiffness parameters (e.g., K24,1) initially 
decrease and only later increase. This is 
because the muscle-like mechanisms (i.e., 
VAAMs) initially soften the joints to absorb 
the impact of external loads, and later stiffen 
them to obtain more force for foothold and 
moving forward. Similarly, the PEs of the 
VAAMs also soften and stiffen the FTi joints 
during stances phases. In other words, the 
VAAMs stiffen joints when the external load 
increases (i.e., stance phases). This property of 
the VAAMs is comparable to that of biological 
muscles, which become stiff when the external 
load increase. Note that AMOS had difficulties 
to walk on all experimental surfaces when 
only fast or slow learners were used to tune 
stiffness parameters K16×1 and K26×1. Thisss 
is because the slow or fast learners allow only 
for global convergences or local oscillatory 
stiffness responses. Whereas combining the 
slow and fast learners, the dual-rate learners 
enable K1m,1 and K2m,1 to achieve global 
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convergences and local oscillatory stiffness 
responses thereby leading to stable and 
adaptive walking on different surfaces. 
Moreover, the ranges of the stiffness 
parameters K1m,1 and K2m,1 vary between 
hind and nonhind legs. Lower K1(3,6),1 and 
higher K2(3,6), press the hind legs more down, 
which enhance locomotion stability, compared 
to the front and middle legs. This is because 
the mass of AMOS mainly concentrates on its 
hind part. Furthermore, the values of B(1,2)f 
and B(1,2)s are empirically chosen to produce 
proper stiffness parameters K1m,1 and K2m,1 
which lead to appropriate (e.g., smooth) 
compliant joint motions of AMOS. For 
example, the compliant CTr joint motions are 
smoother when the parameters K2m,1 of their 
driving VAAMs are self-adjusted. 

 

Fig.9. Sensorimotor learning for adjusting 
stiffness parameter K24,1 during a swing and 
stance phases.  

 

Fig. 10. Stiffness parameters K11−6,1 and 
K21−6,1 after learning. Here the gait is fast 
caterpillar (i.e., the modulatory input S=0.10). 
Stiffness parameters (a) K11−6,1 of the 
VAAMs that drive the FTi joints and (b) 
K21−6,1 of the VAAMs that drive the CTr 
joints. 

Adaptive Leg Compliance for Different 

Gaits  

      Actively adjusting stiffness parameters 
K16×1 and K26×1 allows AMOS to 
accommodate different gaits. AMOS, for 
instance, walked on fine gravel when slow 
wave (i.e., S = 0.02) and fast caterpillar (i.e., S 
= 0.10) gaits were chosen. One can see that 

 

Fig. 11. Smoothness of the compliant CTr 
joint motions that varies with the stiffness 
parameters K2m,1. Note that changing initial 
joint angles θ2m,1 does not affect the 
smoothness of the compliant CTr joint 
motions. 
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Fig. 12. Adjustments of K14,1 and K24,1 for 
different gaits. AMOS walked on fine gravel 
where its gait was chosen as slow wave (i.e., S 
= 0.02) and fast caterpillar (i.e., S=0.10) gait, 
respectively. Sensorimotor learning enables 
AMOS to self-adjust stiffness parameters 
K14,1 and K24,1 for the left front leg. (a) TC 
joint outputs O4. (b) CTr joint outputs O10. (c) 
Stiffness parameters K24,1 determine the 
compliance of CTr joint motions of the left 
front leg. (d) FTi joint outputs O16. (e) 
Stiffness parameters K14,1 determine the 
compliance of FTi joint motions of the left 
front leg. (f) Foot contact force errors e4,1. 

AMOS softens and stiffens its CTr and FTi 
joints during stance phases, no matter which 
gait is chosen. Moreover, the slow wave gait 
enables CTr and FTi joints to achieve stiffer 
motions that result from larger K1m,1 and 
K2m,1  compared to the fast caterpillar gait. 
That is, AMOS stiffens the legs during stance 
phases when the speed of its leg motion is 
reduced from the fast gait to the slow gait. 
This result is comparable to the finding of 
physiological experiments. 

 

Fig. 13. Adjustments of K14,1 and K24,1 for 
different surfaces. An intermixed gait (i.e., 
modulatory input S = 0.12) was chosen for 
AMOS to walk on fine and coarse gravel, 
respectively. Sensorimotor learning enables 
AMOS to self-adjust stiffness parameters 
K14,1 and K24,1 for the left front leg. (a) TC 
joint outputs O4. (b) CTr joint outputs O10. (c) 
Stiffness parameters K24,1 determine the 
compliance of the CTr joint motions of the left 
front leg. (d) FTi joint outputs O16. (e) 
Stiffness parameters K14,1 determine the 
compliance of the FTi joint motions of the left 
front leg. (f) Foot contact force errors e4,1. 
Low speed animals walk by vaulting stiffer 
legs. Conversely, AMOS softens its legs when 
the speed of its leg motion is increased from 
the slow gait to the fast one. This finding may 
reflect a control strategy of polyped (i.e., > two 
legs) locomotion where polyped systems 
soften the legs owing to energy efficiency 
requirements. Our experimental results also 
show that the fast caterpillar gait (i.e., S = 
0.10) allows AMOS to achieve softer leg 
motions which lead to more energy-efficient 
locomotion on all experimental surfaces  
compared to the slow wave gait (i.e., S = 
0.02). Note that errors during swing phases 
result from delayed feedback, which makes the 
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phase differences between the real and 
predicted forces. However, in this paper, the 
stiffness parameters are adjusted only to 
reduce the errors during stance phases. The 
large errors during swing phases are currently 
ignored for adjusting stiffness parameters. 
During the swing phases, the stiffness 
parameters are kept fixed as the stiffness 
parameters from the previous stance phases. 

Adaptive Leg Compliance for Walking 

on      Different surfaces  

       Actively adjusting stiffness parameters 
K16×1 and K26×1 also leads to       adaptive 
locomotion on different surfaces,forexample, 
when an intermixed gait (i.e., modulatory 
input S=0.12) was chosen for AMOS to walk 
on fine and coarse gravel, respectively. On 
these two surfaces, AMOS joints receive the 
same outputs1 of the MNN. One can see that 
the TC joint motions of the left front leg are 
the same because they are controlled only by 
feed-forward neural control (i.e., without 
passive elements). By contrast, CTr and FTi 
joint motions are different  during stance 
phases when AMOS walks on fine and coarse 
gravel, respectively. This is because TC, CTr, 
and FTi joints act with different roles (i.e., 
compliance or actuation) for controlling leg 
motions in stance phases. Moreover, we can 
see that the CTr and FTi joints are stiffer2 [i.e., 
higher K14,1 and K24,1 values]. when AMOS 
walked on coarse gravel, compared to fine 
gravel. This makes the legs penetrate more 
deeply, but also extend more widely into the 
coarse gravel.  

Energy Efficient Walking 

        In the previous sections, we show that the 
proposed neuromechanical controller coupled 
with sensorimotor learning enables AMOS to 
produce coordinated and variable compliant 
joint motions that accommodate different gaits 

and surfaces. For each surface, nine gaits  were 
chosen by changing the modulatory input S of 
the MNN. The variable compliant joint 
motions lead to different energy efficiencies of 
AMOS walking on fine gravel, coarse gravel, 
elastic sponge (stiffness 0.523 kN/m), and 
grass land. Typically, the energy efficiency is 
measured by COT (i.e., specific resistance) as 

  

 

 

where Pavg is average power consumption. 
mg is the weight of AMOS, i.e., mg = 52.974 
N. vavg is its average forward speed when 
AMOS walks a distance d using time t. For 
each gait, we repeatedly ran the hexapod robot 
on each surface until ten successful runs were 
obtained. For each successful run, the average 
power consumption Pavg is calculated based 
on the electrical current supplied to all motors 
of AMOS, which is measured by a current 
sensor. Low COT corresponds to more energy 
efficient walking. COTs when AMOS walked 
on the four VVCsurfaces using the nine gaits. 
One can see that AMOS achieves more energy 
efficient walking by using gaits with 
intermediate leg speeds, compared to a slower 
leg speed (i.e., modulatory input S = 0.02, the 
slow wave gait) or a faster leg speed (i.e., S = 
0.18, the fast tripod gait). Moreover, different 
gaits let AMOS consume different energetic 
costs. For instance, the slow intermixed gait 
(i.e., S=0.12) enables AMOS to achieve more 
energy efficient walking on fine gravel  while 
the fast intermixed gait (i.e., S = 0.14) is an 
efficient gait for AMOS walking on coarse 
gravel. 
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Fig. 14. Energy efficiencies of AMOS walking 
on different surfaces using different gaits. The 
energy efficiency is measured by COT [i.e., 
specific resistances]. Lower COT corresponds 
to more energy efficient locomotion. Nine 
gaits were chosen for AMOS walking over 
each experimental surface. (a) COTs on fine 
gravel. The slow intermixed gait (i.e., S=0.12) 
enables AMOS to achieve more energy 
efficient walking. (b) COTs on coarse gravel. 
The fast intermixed gait (i.e., S=0.14) is more 
energy-efficient for its walking on this surface. 
(c) COTs on elastic sponge. The slow 
caterpillar gait (i.e., S = 0.08) is the optimizer 
gait. (d) COTs on grass land. The fast 
caterpillar gait (i.e., S = 0.10) allows AMOS to 
achieve more energy efficient walking. 

 

 

Fig. 15. COTs of small legged robots. (a) 
Millirobot enabled diagnostic of integrated 

circuits. (b) RHex. (c) Harvard ambulatory 
microrobot2. d) Dynamic autonomous 
sprawled hexapod (e) Gregor I. (f) AMOS. 

 The slow (i.e., S = 0.08) and fast (i.e., S=0.10) 
caterpillar gaits make AMOS achieve more 
energy efficient walking on elastic sponge and 
grass land, respectively. Integrating 
neuromechanical control and sensorimotor 
learning, the adaptive neuromechanical 
controller enables AMOS to achieve adaptive 
compliant walking, which effectively 
accommodates different gaits and surfaces. 
Such walking is achieved by online adjusting 
stiffness parameters K16×1 and K26×1 of the 
passive elements driving the FTi and CTr 
joints. Note that all damper parameters 
D(1,2)m,1 were set to 1.0 in all experiments 
chosen by trial and error. As a result, the 
adaptive neuromechanical controller  reduces 
COT of AMOSs walking to between 3.4 and 
11.7s. Similarly, the adaptive neuromechanical 
controller allows for lower COT that 
corresponds to more energy efficient walking. 

TABLE I 

 TIMES OF STANCE PHASES AND 

DELAYS VARY WITH S 

 

compared to the adaptive neural controller 
from. This is because the adjustable VAAMs 
of the adaptive neuromechanical controller 
produce high amplitude and smooth joint 
outputs during the stance phase which 
basically stiffen the legs and allow them to 
penetrate deeply into challenging surfaces 
(e.g., coarse gravel). By contrast, other neural 
controllers  like the adaptive neural controller  
cannot achieve this due to the lack of muscle-
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like mechanisms (e.g., VAAMs). Moreover, 
the adaptive neuromechanical controller makes 
AMOS achieve more energy efficient walking  
compared to other small legged robots (less 
than 8 kg). 

 

Fig. 16. COTs and CTr joint outputs under the 
adaptive neuromechanical and neural 
controllers. The experimental surface is the 
coarse gravel. (a) COTs. (b) CTr joint outputs 
O10 (with the fast intermixed gait, modulatory 
input S=0.14).  

 

Fig. 17. Real and predicted contact forces at 
the left front leg. Here the slow wave 
(modulatory input S = 0.02), fast caterpillar (S 
= 0.10), and fast tripod (S = 0.18) gaits were 
chosen on fine gravel, respectively. All delay 
times are not larger than 0.10 s, although they 
increase with the increasing S. See the delay 
times between the real and predicted contact 
forces at Table I. 

 CONCLUSION 

          The proposed method  enables the six-
legged robot AMOS to achieve variable 
compliant joint motions with self-adjustments 
that accommodate different gaits and surfaces. 
These motions are generated by online tuning 
12 stiffness parameters (i.e., K1m,1 and 
K2m,1, m = 1,2,...,6) of the muscle-like 
mechanisms (i.e., the VAAMs) driving 12 
joints. This online tuning is achieved by 
sensorimotor learning only with force 
feedback at the end effectors of the legs. It is 
distinct from active compliance/impedance 
control which is achieved by using 
force/torque feedback at each joint of robotic 
system. Moreover, active 
compliance/impedance control often gives rise 
to unstable locomotion on tough terrain. 
Whereas our method utilizes the proximo-
distal gradient to enhance locomotor stability 
on tough terrain (e.g., gravel). Our method 
also differs from passive compliance, which is 
characterized by physical passive components 
(e.g., springs and dampers. In addition, the 
proposed VAAM is a computational muscle 
model which can be easily applied to control 
physical legged robots. Thereby, the VAAM is 
also different from the Hill’s muscle model 
where there are typically 16 parameters to be 
tuned, usually used in computer simulations. 
In conclusion, the main contribution of the 
work introduced here is that we present a way 
forward to understand and solve Bernstein’s 
problem  of how to efficiently control many 
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DOFs in multilegged locomotion tasks. This 
allows the six-legged robot AMOS to achieve 
adaptive and energy efficient walking without 
complex passive components or force/torque 
sensing systems. Due to the simple forward 
models of the proposed sensorimotor learning, 
the real contact forces lag (e.g., delay) behind 
the predicted contact forces. One can see that 
such delays slightly increase (see Table I) 
when the modulatory input S of the MNN 
increases. Thus, for future work, we will 
replace the simple forward models with 
advanced ones, like reservoir based online 
adaptive forward models. It has been shown 
that such reservoir-based forward models can 
accurately predict sensory feedback and are 
robust to variation of delayed feedback. 
Another option is to use another learning 
method, like deep learning. 
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