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Abstract—Transportation systems in mega-cities are often 
affected by various kinds of events such as natural disasters, 
accidents, and public gatherings. Highly dense and 
complicated networks in the transportation systems propagate 
confusion in the network because they offer various possible 
transfer routes to passengers. Visualization is one of the most 
important techniques for examining such cascades of unusual 
situations in the huge networks. This paper proposes visual 
integration of traffic analysis and social media analysis using 
two forms of big data: smart card data on the Tokyo Metro and 
social media data on Twitter. Our system provides multiple 
coordinated views to visually, intuitively, and simultaneously 
explore changes in passengers’ behavior and abnormal 
situations extracted from smart card data and situational 
explanations from real voices of passengers such as 
complaints about services extracted from social media data. 
We demonstrate the possibilities and usefulness of our novel 
visualization environment using a series of real data case 
studies and domain experts’ feedbacks about various kinds of 
events. 
Index Terms—Information visualization, visual analysis, smart 
card, big data 

1 INTRODUCTION 
 
PUBLIC transportation systems, such as railways and metros, in 

mega-cities are always required to increase their resilience to 

extreme situations caused by various events. For instance, Tokyo, 

which is the biggest mega-city in Japan, will host the 2020 Summer 

Olympics and Paralympics, which will cause large scale movements 

of people over the wide area around Tokyo. Powerful inland 

earthquakes are also estimated to possibly occur in the Tokyo 

metropolitan area. Public transportation systems are now preparing 

responses for these events. To increase the resilience of the systems, 

lessons must be learned from past events to understand how the 

systems are affected by changes in passengers’ behaviors. Integration 

of smart card data and social media data enables us to replay past 

events and to discover abnormal situations of transportation systems, 

propagations of abnormalities over transportation networks, and 

passengers’ complaints or dissatisfaction about which even train 

system operators and station staff do not know. While some analysis 

systems have utilized both mobility data and social media data [1], 

[2] to understand human behavior or traffic anomalies, they cannot 

support both finding abnormal situations from wide spatio-temporal 
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space and exploring spatio-temporal propagation of them,and 

interactively exploring their reasons in detail. Developing 

a visual environment for exploring passenger behaviors 

in a complex transportation system using transportation 

logs and social media stream is still a challenging task. For 

supporting effective exploration, the environment needs to 

satisfy the following requirements: 

1) Discovering unusual phenomena from the wide 

range of temporal overviews that are derived from 

differences between daily and event-driven passenger 

behaviors. The techniques for intuitively verifying 

effects of known events and discovering trouble 

unknown to even train system operators are desired. 

2) Understanding changes in passenger flows and spatial 

propagation of unusual phenomena in each time 

period on a wide area metro network. A visual exploration 

environment is necessary to intuitively understand 

the route, speed, and range of propagation of 

the unusual phenomena such as abnormal crowdedness. 

These are difficult for the train system operators 

to understand because the transportation system network 

in Tokyo is extremely dense and complicated. 

3) Exploring reasons for unusual phenomena or their 

effects from real users’ voices. A system is required for 
exploring information about passengers’ complaints, 
activities such as use of taxis or buses, and confusing situations 

instations,which often cannot be obtained from 

customer support or operation trouble databases. 

This paper proposes a novel visual fusion analysis system 

that can support ex post evaluations of trouble in a 

metro system by using two forms of big data: archived 

transportation logs from the smart card system of the 

Tokyo Metro and social media data from Twitter. Knowledge 

acquired through the visualized results mostly 

reflects real situations such as disasters, accidents, and 
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public gatherings. To address the above requirements, we 

built the analysis system by integrating the following 

visualization components: 1) HeatMap view provides a 

temporal overview of unusual phenomena in passenger 

flows, 2) AnimatedRibbon view visualizes temporal changes 

in passenger flows with spatial contexts and propagation 

of unusual phenomena over the whole metro network 

using animation, and 3) TweetBubble view provides an 

overview of trends of keywords explaining the situation 
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during the unusual phenomena. 

We demonstrate the usefulness of our novel visualization 

system through a series of case studies extracted from real 

data related to natural disasters, accidents, and public gatherings. 

These case studies show how our visualization system 

enables users such as domain experts in the metro 

operating company to explore hidden knowledge based on 

data-driven analysis and visualization that were previously 

unattainable. 

In summary, we have made the following contributions. 

(1) We introduce one of the first visual analysis systems that 

integrate smart card data including origin-destination data 

and textual social media data. (2) We provide three coordinated 

views, HeatMap, AnimatedRibbon and TweetBubble 

view, to help analysts to understand changes in passengers’ 
behavior in the complex transportation systems. (3) AnimatedRibbon 

view provides a novel visualization technique to 

dynamically represent changes in multiple attributes values 

of both nodes and edges in a network while embedding 

them in a spatial context. (4) The case studies using real data 

and domain experts’ feedbacks strongly highlight the effectiveness 

of our system and three visualization components. 

In what follows, we give an outline of related work in 

Section 2. We offer information about our data set in 

Section 3. We introduce the overview of our system in 

Section 4. We then describe a method for extracting passenger 

flows in Section 5 and situational explanations in 

Section 6. We introduce our novel exploration environments 

in Section 7. We present some case studies in Section 8. Section 

9 presents reviews from train operating system experts. 

This article ends in Section 10 with a conclusion. 

 

 

 
EXISTING SYSTEM:- 

 

  Existing concept deals with RDBMS which contains lot of 

drawbacks  

data limitation is that processing time is high when the data is huge 

and once data is lost we cannot recover. 

DRAWBACKS 

Existing concept deals with RDBMS which contains lot of 

drawbacks data limitation is that processing time is high when the 

data is huge and once data is lost we cannot recover. 

 

PROPOSED SYSTEM 

It deals with providing database by using hadoop tool we can analyze 

with no limitation of data and simple add number of machines to the 

cluster 

we get results with less time, high throughput and maintainance cost 

is very less and we are using joins , partitions and bucketing 

techniques in hadoop . 

 

2 RELATED WORK 
2.1 Smart Card Data Analysis 
Smart card data is one of the data sources to analyze operation 

of public transportation systems [3], [4]. Ceapa et al. 
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focused on congestion patterns of some underground stations 

in London to reveal station crowding patterns to avoid 

traffic crowdedness [5]. They utilized data of oyster cards, 

the smartcards used on the London Underground. Their 

spatio-temporal analysis showed a highly regular crowding 

pattern during the weekdays with large spikes occurring in 

short time intervals. Sun et al. provided a model to predict 

spatio-temporal density of passengers and analyzed it for 

one MRT line in Singapore [6]. However, previous work 

only focused on a single selected line or some stations. One 

reason is that most smart card data does not include transfer 

station information. Our work speculates the most probable 

path of each trip from origin and destination in smart card 

data and succeeds in visualizing propagation of effects of 

trouble on the metro network. 

Zeng et al. [7] provided a visualization system to explore 

passenger mobility in a Singapore public transportation systems 

including Metro system and public bus network. They 

estimated various mobility-related factors such as waiting 

time, riding time, transfer time, and travel efficiency using 

data including passenger journey data via RFID card, transit 

line schedule data, and transportation network data. They 

then visualized them to explore geographical accessibility, 

time-efficient routes and their temporal variations along the 

origin-destination journeys. Although they focused on visualizing 

mobility-related information along routes from a 

specific origin in a tree structure, our work focus on visualizing 

spatio-temporal propagation of crowdedness or emptiness 

in a complicated network. As far as we know, there 

has been no research on the visualization of propagation of 

influences spreading over a wide range of public transportation 

systems such as metro networks 

. 

2.2 Spatio-Temporal Information Visualization 
There have been some research on and systems developed 

for the visualization of geo-spatial and temporal values on a 

map. Andrienkos and Slingsby et al. utilized multiple heatmaps 

in a map divided into regular rectangles [8], [9]. Each 

heatmap in the grid represented temporal overview of traffic 

volume in a specified area. Wang et al. also used heatmaps 

to visualize temporal changes in traffic speeds in 

selected road sections [10]. Introducing 3D icons into a map 

in place of heatmaps is one of the alternative approaches for 

representing temporal overview of attribute values in specified 

spots [11], [12]. Their approach focused on describing 

changes in values at independent points or areas and did 

not provide a method for representing temporal changes in 

values between two points or flows. 

There has been some research on analyzing mobility data 

and extracting and visualizing important events or mobility 

patterns. Doraiswamy et al. introduced techniques to extract 

urban events from large spatio-temporal data such as taxi 

trips in New York City1 [13]. Wang et al. extracted and visualized 

traffic jams and their propagation from data of taxi 

trips in Beijing [14]. Andrienko et al. extracted and characterized 

important places from mobility data such as GPS 

tracks of cars and flight trajectories and visualized them in 

3D spatio-temporal space [15], [16]. Unlike these cases, 

smart card data in our system includes origin-destination 

(OD) data without trajectory information. We therefore 

need to speculate the most probable route for each trip from 

OD data and visualize aggregated passenger behaviors. 

Ferreira et al. provided a visual environment for comparing 

temporal changes in values such as trip duration or number 

of trips between selected OD regions using taxi trip data 

in New York City [17]. Flowstrates visualized a temporal 

overview of flow magnitudes among multiple OD pairs by 

usingheatmap and two separate maps [18]. Jiang et al. introduced 

Circular pixel graphs to represent spatio-temporal patterns 

of OD distributions from or to a selected region using 

circularheatmaps [19]. Although their approach can visualize 

temporal changes in flows among two separated regions, it 
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1. Although they also utilized MTA subway data in New York City, 

the subway data does not includes trip information of passengers but 

delay information of each train. 

 

 
86 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 1, 
JANUARY-MARCH 2016 
cannot represent changes in flows in the specific trajectories or 

routes on the map such as lines of trains or roads. 

Tominski et al. showed the usefulness of 3D trajectory 

bands to visualize trajectory attribute data [16], [20]. In their 

visualization, attribute data of individual trajectories was 

visualized as color-coded bands and sets of trajectories 

were visualized by stacking the bands. Cheng et al. also utilized 

3D staked bands to represent overview of spatio-temporal 

changes in attribute data on a road network [21]. 

Stacked and color-coded 3D bands are useful for representing 

spatio-temporal changes in an attribute value on the 

map, but they cannot represent two or more kinds of attribute 

values or their scale such as the number of people. Our 

approach utilizes 2D heatmaps for overviewing temporal 

changes in flows and 3D animated ribbons for simultaneously 

visualizing changes in absolute counts such as the 

number of passengers and relative counts such as the deviation 

from the average and how these propagate in a complicated 

network. 

Visualization of time-varying changes in the number of 

passengers in a Metro network is a kind of dynamic graph 

visualization. Andrienkos proposed methods for representing 

generalized movements as network of flows [22], but 

they did not provide a method for visualizing temporal 

changes in flows. Although there have been some research 

on dynamic graph visualization [23], [24], [25], as far as we 

know, there has been no research to be able to simultaneously 

provide insights into multiple attributes of both nodes and 

edges in a graph while embedding them in their spatial and 

temporal context as our AnimatedRibbonviewdoes. 

 

2.3 Spatial Tweet Visualization 
LeadLine [26] detected events from social media data, 

extracted information about 4 Ws (who, what, when, and 

where) related to the events, and then visualized the information 

in coordinated views. SensePlace2 [27] provided an 

integrated environment for filtering and visualizing spacetime- 

theme information from twitter streams. Thom et al. 

provided visual analysis system for detecting spatio-temporal 

anomalies from geo-located tweets and visualizing them 

as word clouds representation on a map [28]. Their 

approaches focus on exploring events from social media 

data without using other data resources. 

Pan et al. provided a system for traffic anomaly detection 

from human mobility data and anomaly analysis using 

social media data [1]. They used term clouds to visualize 

terms related to the detected anomalies. Although in their 

approach visualization is only used for showing detected 

results, our work focus on providing interactive environments 

for finding anomalies and exploring them in detail 

by using two forms of data from smart card system and 

social media. 

 

3 DATASETS 
3.1 Smart Card Data 
We use a large scale data set of travel records from March 

2011 on the Tokyo Metro extracted from the smart card system. 
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Tokyo has the complicated train route map.2 It consists 

of lines of various kinds of railway companies including 

Tokyo Metro, Toei Subway, Japan Railway (JR), and many 

private railroads. We analyze large scale log data covering 

almost all of the business area of Tokyo. It consists of 28 

lines, 540 stations, and over 410 million trips. This includes 

lines and stations besides Tokyo Metro ones if passengers 

used lines of other railway companies for transfers. 

In our experiments, we use passengers log data from 

anonymous smartcards without personal identity information, 

such as name, address, age, and gender. Card ID is 

eliminated from each record. Each record consisted of the 

origin, destination, and exit time.3 Since transfer information 

was not included, we estimated the probable route for 

each trip (as explained in Section 5). 

Trains in Tokyo are mainly used by working people, so 

the usage patterns of trains on weekdays and weekends 

may be different. We separate the data into weekdays and 

weekends and analyze them independently. National holidays 

and some other days in vacation seasons are treated 

as weekends. 

Passengers are expected to behave with some periodic 

patterns, especially daily ones, thus we try to do a statistical 

analysis of this data. Fig. 1 shows the average and standard 

deviation of the number of passengers at every time period 

of the day through one year, from April 2012 to March 2013. 

The error bar of each point indicates standard deviation. To 

extract Fig. 1, we first estimate the trip time length of each 

trip log (mentioned in Section 5) and then accumulate the 

number of passengers who were travelling at a certain time 

period. The time periods are divided every 10 minutes. 

Weekdays and weekends have clearly different demand 

patterns. The deviations of weekdays are considerably 

smaller than those of weekends. This means that most passengers 

actually behave in a periodic manner, so we may be 

able to detect some irregular accidents or events by comparing 

the differences with the average number of passengers 

at each section. We try to confirm this hypothesis in the 

following sections. 

 

3.2 Social Media Data 
Social media immediately reflects real world events such as 

accidents. In this paper, we utilize Twitter as a social media 

Fig. 1. Average and standard deviation of number of 
passengers over 
one year (April 2012 to March 2013): (a) weekdays, and (b) 
weekends 
and national holidays. 
2. http://www.tokyometro.jp/en/subwaymap/index.html 3. No 

records contain trip start times. 

ITOH ET AL.: VISUAL EXPLORATION OF CHANGES IN 
PASSENGER FLOWS AND TWEETS ON MEGA-CITY 
METRO NETWORK 87 
data resource. We have been crawling through more than 

four years’ worth of Twitter data from Twitter API from 

March 11, 2011. Our crawling started from 30 famous Japanese 

users by obtaining their past timelines. Then we 

repeatedly expanded the set of users by following retweets 

and mentions appeared in their timelines. We have continuously 

performed the user expansion and tracking of their 

timelines. We then obtained data of more than 2 million 

active users and 25 billion tweets on 2015. 

 

4 OVERVIEW OF SYSTEM WORKFLOW 
We construct an analysis framework which can integrate 

both smart card and twitter data to explore passengers’ 
behavior. Fig. 2 shows the design of our system workflow. 

Smart card data are transferred to our analysis system once a 

month. We estimate passenger flows from the one month 

worth of data, compute average flows for every sections 

from updated last one year worth of flows, and compute 

z-scores (difference normalized by standard deviation) of 
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the last one month (described in detail in Section 5.1). 

This computation requires less than one hour in total 

under the current implementation. When we try to simulate 

passengers’ behavior under accident case, flows are recomputed 

by the smart card data with constraints; taking into 

account of suspended lines, for example (described in detail 

in Section 5.2). The recomputation process requires several 

minutes. Passengers’ reactions are obtained from tweet 
archive by extracting situational explanations (described in 

detail in Section 6). All tweets which are related to traffic conditions 

are archived. Visualization components described 

in Section 7 access extracted information in on demand 

manner to keep high interactivity. 

 

5 EXTRACTION OF PASSENGER FLOWS 
With the recorded smart card data, we can understand how 

many passengers used a certain station. However, that data 

does not include the entrance time, so we could not see how 

many passengers are there within a certain time period. 

Moreover, if we try to estimate the crowdedness of each 

train, or effects of an accident at a certain location, the origin- 

destination pair is insufficient. We must figure out the 

travel path of each passenger for such requests. 

 

5.1 Estimating Daily Passenger Flows 
There are several possible paths to take from an origin station 

to a destination station. A smart card log contains information 

about where a passenger touched in and where and 

when he/she touched out. It does not include the entrance 

time or transfer stations’ information. We therefore speculate 

the most probable path for each trip (origin and destination 

pair) by assuming that they take the shortest time path. 

We assume that total travel time (t) of each trip is defined 

ast ¼ T þ C þW, where: 

_ T is the time while passengers are riding trains. It 

defined by using the timetable. 

_ C is the walking time while passengers are transferring 

trains. It relates to the structure of the station, so it 

differs at every station. We roughly define these times 

by using the information fromthe train company. 

_ W is the time waiting for a transfer. We define this as 

(average train interval / 2) extracted from the timetable. 

It differs on every line. 

With this model, we can calculate the estimated travel 

time of any travel path. We then search for the shortest time 

path of every origin-destination stations pair by using the 

Dijkstra algorithm. 

We want to find unusual phenomena that differ from the 

usual cyclical patterns of the passengers. For this purpose, 

we first estimate in which section of a line a passenger passes 

in a particular time period from the speculated shortest time 

path and exit time. We then accumulate the number of passengers 

who travelled a certain section in a certain time 

period (every 10 minutes or one hour). Data for weekdays 

and data for weekends are separately analyzed because 

weekdays and weekends show clearly different patterns as 

shown in Section 3.1. After that, we calculate the simple moving 

average (SMA) of the previous one year for each month 

and calculate standard deviation using the same time window. 

SMA reflects daily cyclical patterns, and unusual patterns 

can be detected by comparing it with log data. 

All passenger flows from one-day smart card records 

take several minutes to estimate using one CPU core. This 

process can be easily parallelized because path estimation 

of every trips are totally independent. We can efficiently 

use 20 CPU cores on one server, therefore we achieve to 

extract one month worth of passenger flows within several 

minutes. The amount of computation time is acceptable for 

current usage. Many parts of our current system are experimentally 

implemented and have large room for improvement 

in terms of the execution performance. 
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5.2 Estimating Passenger Flows after Accidents 
Accidents sometimes cause service suspensions at several 

sections, making passengers take detours. In such situations, 

the route estimation method proposed in Section 5.1 

cannot calculate an appropriate route because the shortest 

path would be changed by service suspensions. 

We can recompute the shortest paths considering the 

suspension information such as suspended sections and 

time. This refines passenger flow estimation to make it 

more appropriate to describe what happened at that time. 

We provide interfaces to input constraints of suspended 

lines and/or sections and start and end times of suspension 

Fig. 2.Overview of our system workflow. 
88 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 1, 
JANUARY-MARCH 2016 
on our visual exploration environment shown in Section 7. 

The visual exploration environment visualizes the recomputed 

result. We can then visually check how passengers 

take detours and concentrate on particular lines. 

Fig. 3 compares passenger flows with and without suspension 

information on 27 November 2013, the day on 

which an accident resulting in injuries happened at Machiya 

station on the Chiyoda Line. Fig. 3a shows passenger flows 

without suspension information. Fig. 3b shows recomputed 

passenger flows using suspension information based on factual 

information. In Fig. 3a, the flow of passengers continues 

to exist even after the Chiyoda Line service is suspended. In 

Fig. 3b, sections from Kita-Senju to Yushima are suspended 

from 9:59 to 10:37. We can find out that passenger flows concentrate 

on the Hibiya and Ginza Lines to avoid selected 

sections on the Chiyoda Line.4 

We can use suspension information obtained from an 

external information resource such as the metro operating 

company or the transport information webpage as inputting 

constraints for our system. The metro operating company 

holds information about events that disrupt their subway 

system. We also collect the train operating condition information 

from the transport information webpage of a thirdparty 

company.5 

 

our passengers flow model is constructed on the assumption 

that every passenger will take the fixed shortest path. 

Their real behavior is more diverse; they will also consider 

travel fees, crowdedness, ease of train transfer, etc. Using a 

probabilistic behavior model may be more appropriate to 

reflect such diversity. When considering the cases of accidents, 

our method makes another train scheduling assumption: 

trains that were unaffected by the accidents keep 

travelling on time. Trains were stopped at certain sections 

in the case of serious accidents, but more modest actions 

such as delaying trains or partially eliminating services 

would have happened in many cases. We have already tried 

to construct a preliminary behavior model of passengers 

after accidents have happened [29] and plan to improve the 

model by introducing such details. 

Since the current smart card system does not have the 

information of entrance time or transfer points of each trip, 

we cannot evaluate the preciseness of the estimated passenger 

flows directly. We interviewed some of the staff of the 

train operator and found that the extracted flow seems to 

correspond to their knowledge of the daily operation. We 

plan to evaluate the preciseness through comparison with 

other statistical survey results such as traffic censuses. 

 

6 EXTRACTION OF SITUATIONAL EXPLANATION 
Social media enables people to post information about what 

they saw, thought, and did during and after events such as 

accidents. We can extract more precise or fine-grained information 

about the events that sometimes cannot be obtained 

by operating companies. 

We extract a set of words (weighted by word frequencies 

based on the measure similar with tf-idf) for overviewing 
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and explaining situations. For this purpose, we first calculate 

word frequencies for every co-occurring word for each 

station name or line name on each date and time from the 

data set described in Section 3.2 as tfðword; station=line; 
date and timeÞ(if we specify a start time and an end time, 

we use the sum of the word frequency between them 

(tfðword; station=line; timewindowÞ)). 

We then count the number of days when each word 

appears for each station or line and treat it as dfðword; 
station=lineÞ. In this case, we treat a set of tweets on one 

day including the name of a station or line as one document 

for each station or line. It is used for decreasing importance 

of words commonly used all the time for each station or 

line. Small accidents or short delays happen almost every 

day around Tokyo. Therefore, if we use dffor all documents 

that are related to all stations and lines, words related 

to trouble may not be treated as important. Moreover, the 

characteristics of co-occurring words that appear routinely 

are different among stations or lines. Therefore, we calculate 

dffor individual stations or lines. 

We finally calculate weightðword; station=line; date and 
time=timewindowÞas tf_ idfðword; station=lineÞ(s.t.idf¼ 

logð jdatej 
dfðword;station=lineÞÞ þ 1). 

 

7 EXPLORATION ENVIRONMENT FOR PASSENGER 
FLOWS 
In this section, we describe how we design visualization 

views for supporting exploration requirements described in 

Section 1. We provide three types of visualization views: 

HeatMap view and AnimatedRibbon view to explore 

unusual phenomena of passenger flows and spatio-temporal 

propagation of them extracted by the methods mentioned 

in Section 5, and TweetBubble view to explore 

situational explanations extracted by the method described 

in Section 6. These views are coordinated with each other. 

Such coordinated multiple views not only combines the 

Fig. 3. Passenger Flows after accident on 27 November 2013, 
the day 
on which an accident resulting in injuries happened at Machiya 
station 
on the Chiyoda Line. The height of 3D ribbons represents the 
number of 
passengers in these examples. Colors represent relative 
crowdedness 
or emptiness compared with the average situation; red 
indicates crowdedness, 
blue indicates emptiness, and green indicates a mostly 
normal. 
4. The meaning of each visual element is described in Section 7. 

5. http://transit.goo.ne.jp/unkou/kantou.html (in Japanese) 

 
ITOH ET AL.: VISUAL EXPLORATION OF CHANGES IN 
PASSENGER FLOWS AND TWEETS ON MEGA-CITY 
METRO NETWORK 89 
advantages of existing visualizations but also extend their 

use for the simultaneous analysis of multiple aspects. 

 

7.1 HeatMap View 
For easily discovering unusual phenomena in passenger 

flows on a particular line, over multiple lines over one day 

and exploring their temporal characteristics from the 
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wide range of temporal overviews, HeatMap view provides 

functions for overviewing deviation from average 

passenger flows in each time bin on each section for every 

line over one day. It is used for spotting interesting phenomena 

by using patterns of colors. Although it does not 

provide spatial context, after finding out interesting temporal 

spots showing crowdedness or emptiness, we can 

explore spatial changes in them by combining HeatMap 

views with AnimatedRibbon views. Moreover, we can 

observe their causes and effects by combining HeatMap 

views with TweetBubble views. 

HeatMap view uses the x-axis for the timeline and the 

y-axis for lines. The timeline is divided every 10 minutes 

(Fig. 4). Each line is represented by different colors, and both 

directions (up and down) are treated separately. Up and 

down lines are separated by color, and labeled by the starting 

stations. Each up/down line consists of sections that are 

pairs of origin and destination stations as shown in Fig. 4.6 

The order of lines can be manually changed. HeatMap view 

also can be zoomed and panned interactively. Users can 

interactively select lines or times to visualize in other views 

such as AnimatedRibbon view and TweetBubble view. 

 

7.1.1 Design Alternatives for HeatMap View 
Arranging multiple heatmaps [8], [9], [10] on the map is one 

of the design alternatives to visualize and compare multiple 

temporal overviews. However, it is difficult to arrange multiple 

heatmaps for all sections along all metro lines to compare 

changes in passenger flows over the whole metro lines. 

It would suffer from occlusion and clutter by the substantial 

number of heatmaps because of highly dense and complicated 

networks. Although arranging multiple 3D icons or 

walls on the map is another possible design alternatives [11], 

[12], [16], [20], [21] to show multiple temporal overviews, it 

is clearly impossible to compare temporal overviews for 

multiple lines or routes on the map (the limitations of this 

approach are discussed in Section 7.2.1 in more detail). 

Flowstrates [18] shows one solution for arranging the huge 

number of heatmaps vertically for representing temporal 

changes in flows on multiple OD pairs. HeatMap view, the 

solution which we propose, also takes the similar approach 

that vertically arranges heatmaps for every section. 

 

7.1.2 Color Encoding on HeatMap View 
The color code for each cell in the HeatMap represents 

relative crowdedness or emptiness of each section compared 

with the average situation. For this purpose, we 

calculate z-scores (difference normalized by standard 

deviation) of each section for each time bin by SMA 

and standard deviations shown in Section 5. Red represents 

a higher z-score indicating crowdedness, blue represents a 

lower z-score indicating emptiness, and green represent a 

middle z-score that indicating a mostly normal situation. 

Two types of thresholds (one for smaller value (S-th) and 

the other for larger value (L-th)) can be manually defined to 

emphasizessmall differences or change the range for viewing 

z-scores. For instances, Fig. 5a uses S-th¼ 2:5 and 

L-th¼ 9:0, and Fig. 5b uses S-th¼ 2:0 and L-th¼ 5:0. 

Z-scores for each block are normalized by using S-thand 

L-th, and then the color code is defined. If the absolute 

value of a z-score is smaller than S-th, then green is used. If 

the absolute value of a z-score is larger than L-th, the cell 

becomes red/blue. Color is adjusted between green and red 

or blue. S-thand L-thvalues for specifying color code can 

be used for specifying colors in AnimatedRibbon view. 

 

7.2 AnimatedRibbon View 
For understanding changes in passenger flows and spatial 

propagation of unusual phenomena in a complex metro network, 

AnimatedRibbon view provides the functions for 

Fig. 4.HeatMap view 11 March 2011, the day on which the 
Great East 
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Japan Earthquake occurred. All lines were suspended just 
after the earthquake 
at 14:46 (shown as blue time bins). Some lines resumed 
around 
20:40, causing concentration of passengers (shown as red 
time bins). 
Fig. 5.HeatMap views related to the spring storm in April 2012 
with 
different threshold values (S-thand L-th): (a) for emphasizing 
only time 
bins with large z-score, and (b) for emphasizing small 
differences. 
6. We omit labels for origin and destination stations in other figures. 
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displaying animated temporal changes in the number of 

passengers and crowdedness or emptiness of each section 

in the Metro network (Fig. 6). It dynamically shows changes 

in two attribute values (absolute number of passengers for 

both directions on each section every 10 minutes by using 

height of 3D stacked ribbons and deviation from average by 

using color-coding) simultaneously while maintaining geographical 

context in the Metro network. A 3D bar on each 

station presents the number of passengers who exited the 

station every 10 minutes. 

If we have information about service status such as in 

operation and suspended operation, AnimatedRibbon 

view changes the width of each section according to the 

statuses (for instance, Fig. 9c uses thin lines and bold 

lines for representing suspended operation and resumed 

operation respectively). 

 

7.2.1 Design Alternatives for AnimatedRibbon View 
Three functions are required for exploring changes in passenger 

flows and spatial propagation of them on the metro network: 

(1) representing propagation of flows, (2) representing 

the number of passengers and crowdedness or emptiness 

simultaneously, and (3) showing temporal changes in them. 

Graph visualization techniques are one of the best solutions 

to represent spatial propagation of flows on the metro 

network. Three types of techniques can be considered to 

represent temporal changes in passenger flows on the network: 

using small multiples [30], 3D wall map [20], [21], 

and animation. 

Small multiples, which displays visualizations belonging 

to different time steps as small thumbnails in parallel, is 

standard approach to compare multiple situations, however, 

it is difficult to represent long-term changes because of 

the limitation of screen space. 

3D wall map representation using 3D stacked bands 

over the map [20], [21] is one solution for representing 

spatio-temporal changes in an attribute value such as 

crowdedness, however 3D wall map would have difficulty 

in showing multiple attributes values simultaneously. It is 

necessary for exploring the scale of passenger flows, particularly 

those with huge spikes, and exploring propagation of 

abnormal situations on the Metro network at the same time. 

As far as we know, there has been no research to simultaneously 

represent changes in both absolute and relative values 

in flows in a network. 

3D wall map would quickly suffer from occlusion problem. 

We have developed a prototype of the 3D wall map 

view as shown in Fig. 7. This figure shows only two lines 

such as the Marunouchi Line and the Ginza Line, however, 

we can find that it is difficult to read a wall for the 

Marunouchi Line because of the occlusion. It is important 

for us to show multiple lines while keeping readability 

because our work focuses on visualizing spatio-temporal 

propagation of changes in passenger flows on a wide area 

metro network. We therefore conclude that 3D wall map 

representation does not fit for our purpose. 

Utilizing 2D bands such as those used by Andrienkos [22] 
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is one solution for representing the number of passengers. 

However, 2D bands would quickly suffer from severe overplotting 

[20] and the occlusion problem, especially around 

highly connected stations or caused by extremely big values. 

Dang et al. showed that utilizing heights in the 3D 

space to represent the magnitude of values in dense data 

area is useful to avoid over-plotting instances [31]. 

Our AnimatedRibbon view simultaneously utilizes 

heights in the 3D space for representing the number of passengers 

and colors for the level of crowdedness on the 

metro network, and utilizes animation for representing 

dynamical changes in them. Height is more suitable than 

color for representing values that have huge spikes such as 

the number of passengers shown in Fig. 13b because color 

does not have the dynamic range to permit extreme 

magnitude [31]. 

 

7.2.2 3D Design Issues, Solutions, and Limitations 
We utilize the metro network map on the basis of real geographical 

positions. The metro network illustrated in the 

AnimatedRibbon view is very complicated. Utilizing 3D ribbons 

and bars in such a complicated network sometime 

Fig. 6. Animated changes in passenger flows and propagation 
of crowdedness 
onAnimatedRibbon view related to the spring stormin April 
2012. 
Fig. 7. A prototype of the 3D wall map view that shows two 
lines such as 
theMarunouchi Line and the Ginza Line. The displayed 
example shows 
the 3D wall map has low readability for displaying multiple 
lines. 
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causes cluttering of visualization results and the occlusion 

problem. To reduce such occlusion, users can zoom, rotate, 

and pan the 3D space to interactively change the region being 

focused on. Moreover, users can hide ribbons or bars and 

select lines to show bars and ribbons on the selected lines. 

Users can also change the ratio of height for ribbons or bars 

related to the number of passengers to reduce occlusion. 

Users can also pan and zoom the route map in the 2D 

plane. There are some regions in the real route map where 

the station is extremely dense such as around Tokyo, Shinjuku, 

and Ueno stations. The occlusion problem of 3D elements 

easily occurs in such dense areas. Zooming the 

region in a 2D map is one solution to avoid occlusion in 

dense areas. However, we sometimes lose the overview of a 

wide area in zoomed route maps. We therefore implement a 

map distortion technique using fisheye view [32]. Users can 

see details in the dense area, which can be specified by interactively 

selecting a station or a point in the 2D map, and the 

overview of the surrounding area while maintaining geographical 

context to some extent (Fig. 11a). 

Although such techniques can enhance readability, some 

occlusion has still occurred on the dense network. 

Perspective foreshortening makes it difficult to compare 

the heights of ribbons and/or bars in the 3D space in different 

places from the camera. To avoid the problem, our system 

supports an orthogonal projection in which the ribbons 

and/or bars in different places that are the same height look 

completely the same. 

 

7.2.3 Color Encoding for 3D Ribbons and Bars 
The color of each 3D ribbon for each direction is defined using 

z-scores, S-th, and L-thspecified in Section 7.1.2. The color of 

each 3D bar also shows deviation, which is defined by z-score 

normalized by thresholds, from the average number of 

passengerswho 

exited each station in the sameway as passenger 

flows. In both cases, red represents higher than average, blue 
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represents lower than average, and green represents the normal 

situation in the samewayasHeatMap view. 

We can also use transparency to represent z-score normalized 

byS-thand L-thdefined in HeatMap view. In this 

case, ribbons that have a z-score lower than S-thcan be hidden. 

This emphasizes important sections on which users 

should focus. 

 

7.3 TweetBubble View 
For exploring reasons for unusual phenomena or their effects 

from real users’ voices such as what passengers saw, heard, 
and felt in the situation, TweetBubble view provides an overview 

of trends of keywords from people’s tweets related to 

specified times and stations or lines, which can be selected 

byHeatMap view or AnimatedRibbon view. It uses a bubble 

chart to represent the popularity of important words and 

Sparklines [33] to show time-series of the appearance of each 

keyword in each hour for finding bursting timing. 

In this view, the center node represents a selected station 

or line, and other nodes around the center node represent 

words co-occurring with the station or line name (Fig. 87). 

Each node holds tfvalue for each hour and dfvalue 

described in Section 6. We can interactively filter nodes 

(other than the center node) by total tfvalue of all hours 

in the day and time window using range sliders shown 

in Fig. 8. 

A TweetBubble view changes the size of nodes in 

accordance with the weight defined in Section 6 for the 

selected time window as  

weight 
p 
(r: constant). We 

adopt an automatic and dynamic graph layout algorithm 

based on a force-directed model [34] to visualize bubble 

charts. Nodes are colored differently in accordance with 

parts of speech (noun: green, verb: sky blue, adjective: 

pink). 

TweetBubble view embeds Sparklines [33], which are 

small line charts, into every node to present variation of tf 
values for words over time (from 0:00 to 24:00). Parts of lines 

corresponding to the selected time window are highlighted 

in red. 

We can read original tweets including the selected station 

or line name and word in the selected time window. 

The tweets are displayed in the bottom of the view by clicking 

an arbitrary node. These are sorted by time. Tweets are 

colored differently in accordance with their types (normal 

tweet: black, mention: blue, retweet: red). 

Utilizing word-cloud representations on geographical 

maps is one of the design alternatives to visualize trends 

of keywords related to specified places extracted from 

social media [28]. However, we have already used the 

map for displaying passenger flows as AnimatedRibbon 

view. Overlaying word-cloud on the AnimatedRibbon 

view would cause serious overplotting and occlusion 

problem. 

Fig. 8.TweetBubble view related to Toyocho station on 3 April 
2012, on 
which the spring stromcame. It consists of a bubble chart and 
sparklines to 
represent importance ofwords and changes in appearance 
frequencies. 
7. We omit English labels for proper nouns or words that are too 

common. 
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8 CASE STUDIES 
In this section, we demonstrate how our system can be used 

to gain insight into changes in behavior of passengers and 

influences of various kinds of events such as natural disasters 

(Sections 8.1, 8.2.1 and 8.2.2), accidents (Sections 8.3.1 

and 8.3.2), or public gatherings (Sections 8.4.1 and 8.4.2). 
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8.1 The Great East Japan Earthquake 
The earthquake struck off the northeastern coast of Japan at 

14:46. It had a seismic intensity8 of 5-upper in Tokyo. A public 

report9 notes that many public transportation systems suspended 

operation after the earthquake, so most people could 

not travel until midnight or the next morning. The report 

stated that the Tokyo Metro Ginza Line and part of the Tokyo 

Metro Hanzomon Line resumed at 20:40. The Tokyo Metro 

Nanboku Line also resumed at 21:20. The Toei Oedo Line, a 

part of the Toei Asakusa Line, and a part of the Toei Mita 

Line resumed at 20:40, 21:20, and 21:15, respectively. 

Train operating companies’ stuffs knows which lines in 

their company were suspended operation and resumed 

during and/or after huge earthquakes. In this case study, 

we demonstrate whether such operation was really appropriate, 

and what kinds of problems are occurred by the 

operation. 

Fig. 9 visualizes passenger flows on 11 March 2011, the 

day on which the Great East Japan Earthquake occurred. 

Fig 9a shows the situation just before the earthquake. We 

can find almost all lines were operating normally because 

their color is mostly green. We can see that almost all lines 

suspended operation after the earthquake from Figs. 4 and 

9b. There are large blue areas in HeatMap view just after 

14:46 in Fig. 4. The color of each section turns blue in 

AnimatedRibbon 

view in Fig. 9b. 

From the red areas shown in the upper-right part of Fig. 4 

and the red ribbons in Fig. 9c, we can find a huge number of 

people were concentrated on the Ginza Line and moving to 

Shibuya or Asakusa. We can explore the situation in which 

many people tweeted information such as “Ginza Line is running 

again” before and after it resumed as shown in Fig. 9d. 
The spread of such tweets might have accelerated the concentration 

of people to the Ginza Line and Shibuya station. 

We also found that the number of passengers who went 

to and exited Shibuya rapidly decreased around 21:50 after 

the concentration using AnimatedRibbon view in Fig. 9e. 

Such rapid and short-term decreases cannot be shown in 

HeatMap in Fig. 4. We searched for the reason by reading 

original tweets around 21:50 using TweetBubble view 

shown in Fig. 9d. We then found many tweets such as 

“Ginza Line resumed once, but it is suspended again 

because of confusion at Shibuya station” from the tweets 

related to “resuming”. 
Our result shows importance of controlling the passenger 

flows after resuming lines and operating together with other 

public transportation companies during huge disasters. 

8.2 Typhoons and Storms 
Many typhoons pass through Japan every summer and 

autumn. Moreover, we have many extreme storms even in 

spring recently. In this section, we show two case studies to 

demonstrate whether such typhoons and storms cause the 

similar confusion, what the difference is, whether the measures 

to typhoons were properly work, and what kinds of 

problems still remain. 

Visualizations related to typhoons and spring storm 

show similar results. Extreme confusion in Toyocho station 

observed from these case studies gave people in the operating 

company one piece of evidence to help them discuss 

Fig. 9.Visualizations of passenger flows and tweets on 11 
March 2011, the day on which the Great East Japan 
Earthquake occurred. 
8. http://en.wikipedia.org/wiki/Japan_Meteorological_Agency_ 

seismic_intensity_scale 

9. http://www.mlit.go.jp/tetudo/tetudo_fr8_000009.html (in 

Japanese) 
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improving the transportation system around the east side of 
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Tokyo. It led to deeper analysis of passengers’ behavior that 
were affected by suspension of Tozai Line [35]. Information 

obtained from Twitter is very important for understanding 

the influence of service suspension on activities of people to 

improve service operation, including cooperation with 

other transportation services. 

 

8.2.1 Typhoon Roke 2011 
Wind and rain began to be strengthened from afternoon and 

became rainstorm about 15:00 on 21 September 2011 in 

Tokyo. Fig. 10 shows the route map of east side of Tokyo. 

The Tokyo Tozai Line runs above-ground between 

Minamisunamachi 

station and Nishi-funabashi station, which 

includes railroad bridges. Therefore it often suspends operation 

during a strong wind. In the case of Typhoon Roke, 

operation information provided by Tokyo Metro reports 

that it suspended operation between Minami-sunamachi 

and Nishi-funabashi from 15:53 to 18:04 and from 20:40 to 

21:41, and then it resumed at 21:41. Toei Shinjuku Line also 

runs above-ground between Higashi-Ojima station and 

Funabori station. It then suspended operation around 18:30 

because of a strong wind. 

AnimatedRibbon views in Fig. 10 visualizes changes in 

passenger flows on 21 September 2011, the day which 

Typhoon Roke came. Fig. 10a shows that many passengers 

therefore exited from Toyocho station, and lots of passengers 

started to use Toei Shinjuku Line to move to eastern 

area. Fig. 10b shows the situation that most passengers lost 

methods to move to eastern area because both the Tozai 

Line and Toei Shinjuku Line were suspended operation. 

Fig. 10c shows many passengers who were left in Tokyo 

central started to move again by Tozai Line after it resumed. 

8.2.2 Spring Storm April 2012 
A spring storm that had the same intensity as a typhoon hit 

the Japanese mainland on 3 April 2012. Many companies in 

Tokyo urged employees to go home early that day through 

the experiences of the Great East Japan Earthquake and the 

Typhoon Roke last year. 

The HeatMap view in Fig. 5 and the AnimatedRibbon 

view in Fig. 6 visualize changes in passenger flows on 3 

April 2012. The Tozai Line suspended operation between 

Minami-sunamachi and Nishi-funabashi around 17:20. It 

resumed at 21:05. 

Figs. 5b-i) and 6a show the Tozai Line, Toei Shinjuku 

Line, and Tokyo Metro Yurakucho Line became very 

crowded before the normal rush hours. We can find many 

passengers exited Toyocho station in Fig. 6b, and passengers 

started to use Toei Shinjuku Line to move to eastern 

areas in Figs. 5b-ii and 6b after suspension of the Tozai Line. 

Red and blue stripes on the Toei Shinjuku Line in Fig. 5b-ii 

show it could not maintain normal operation. Many people 

therefore had no routes to take to eastern areas of Tokyo. 

Fig. 6c shows passengers who had been left in central Tokyo 

started to move again on the Tozai Line after it resumed. 

TweetBubble view in Fig. 8 shows words related to Toyocho 

station from 15:00 to 24:00. Words shown as huge nodes 

mainly represent abnormal situations of service such as suspension 

and free transfer, or their causes such as strong 

wind. These also include related words such as taxi, bus, 

and walk that represent passengers’ real behavior, how 

they traveled from Toyocho to their destinations, during the 

storm. Original tweets including “taxi” are shown under 
the bubble chart. Most of these tweets said that there was a 

long line of people at the taxi stand. 

8.3 Effects of Accidents 
Indirect effects of accidents are hard to understand. In this 

section, we show two examples of suspension of the JR 

Yamanote Line10 by accidents to demonstrate the influence 

of other railway companies’ accidents on Tokyo Metro, 
whether any common phenomena occurred, and what the 

difference is. 
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From the results, we can confirm similar changes in passenger 

flows occurred in two case studies. It shows possibility 

to predict changes in flows during accident in a complex 

transportation networks. However, these also show the differences 

among two studies caused by other factors, e.g., in 

the case of Section 8.3.1, many passengers moved not to 

Shibuya but to Meiji-Jingumae because of new year’s visit 
to a Shinto shrine. We also recognized that many passengers 

decided their routes according to tweets by others. 

 

8.3.1 Fire at Yurakucho on 3 Jan. 2014 
The fire started at around 6:30 a.m. on 3 January 2014 and 

sent plumes of black smoke over Yurakucho station, which 

is an important gateway to famous business, shopping, and 

nightlife districts such as Yurakucho, Tokyo, Ginza, and 

Shinbashi (as shown in Fig. 11a, which uses the distortion 

technique mentioned in Section 7.2.2). It caused suspension 

of the JR Yamanote Line, JR Tokaido Main Line,11 and 

Keihin-Tohoku Line. 

Fig. 10.AnimatedRibbon view around eastern area of Tokyo on 
21 September 
2011, the day which Typhoon Roke came. 
10. The JR Yamanote Line is a loop line that connects most of the 

major stations in Tokyo. 

11. The JR Tokaido Main Line runs from Tokyo, stops at Shinbashi, 

Shinagawa, and then eventually terminates at Kobe. 
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Fig. 11 visualizes passenger flows after the fire around 

JR Yurakucho station. Figs. 11b and 11c show many people 

changed their routes to their destinations mainly by 

using the Fukutoshin, Marunouchi, and Chiyoda Lines. 

We can observe that many passengers switched to the 

Tokyo Metro Fukutoshin Line in place of the JR Yamanote 

Line in Fig. 11b. The number of passengers 

increased mainly between Ikebukuro and Meiji-Jingumae. 

Many passengers switched from the JR Yamanote Line to 

the Chiyoda Line (from Kita-Senju to Meiji-Jingumae). 

Passengers changed to the Tokyo Metro Marunouchi 

Line to go to Tokyo station. 

Fig. 11c shows changes in passenger flows on the 

Chiyoda Line from Kita-Senju station. Although many people 

normally transfer from the JR Joban Line to the JR Yamanote 

Line at Ueno station, they got off at Kita-Senju station 

and transferred to the Chiyoda Line to go to central Tokyo 

in this situation. 

 

8.3.2 Accident at Ueno Station on 5 February 2013 
Fig. 12 visualizes changes in passenger flows after an accident 

at JR Ueno station on 5 February 2013.12 After the accident, the 

JR Yamanote Line suspended. The accident happened during 

the rush-hour, so it affected many passengers. 

Figs. 12b and 12c shows many people changed their 

routes to their destination. For instance, in the route 

between Shibuya, Shinjuku, and Ikebukuro, many passengers 

switched to the Fukutoshin Line in place of the JR 

Yamanote Line. Passengers changed to the Marunouchi 

Line to go to Tokyo station. 

 

8.4 Large Public Gathering Events 
In this section, we show two case studies of large public 

gathering events. First study demonstrates whether we can 

observe the movement of people when the huge number of 

people gathers into one region. Second study demonstrates 

whether we can trace the behavior of people who moved 

from places to places when large events sequentially 

occurred in different places. Similar events may occur in the 

2020 Tokyo Olympics and Paralympics, so the knowledge 

obtained from such kinds of case studies would be useful in 

formulating plans in preparation for them. 

8.4.1 A Parade by London Olympic Medalists in Ginza 
Fig. 13 visualizes changes in passenger flows on 20 August 
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2012, the day on which a parade by London Olympic 

Fig. 11.Effect on the fire around Yurakucho station on 3 
January 2014. 
Fig. 12.Effect of the accident at JR Ueno station on 5 February 
2013. 
12. The position of Ueno station is out of the range of Fig. 12. It can 

be identified in Fig. 13. 
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medalists was held in Ginza. The parade lasted about 20 

minutes from 11:00, and about 500,000 people gathered.13 

Figures show a massive amount of people gathered in Ginza 

before the parade started and quickly left from Ginza after 

the parade ended. 

By using AnimatedRibbon view shown in Figs. 13b and 

13c, we can recognize extremely huge waves of passenger 

flows occurred before and after the parade. Figs. 13a-i and 

13b show that many people moved toward the Ginza area 

from various quarters after 9:00. We can also find they 

started to leave Ginza just after the parade ended in 

Figs. 13a-ii and 13c. This is a surprising result, because 

Ginza is one of the most famous shopping districts in Japan, 

but most people did not stay there for long. Fig. 13c shows 

that many passengers exited Shibuya, Shinjuku, Ikebukuro, 

Ueno, and Asakusa stations. 

 

8.4.2 Tokyo Marathon 
Tokyo Marathon is held every February from 2007. Almost 

35,000 runners participated and more than one million people 

supported or cheered from roadside every year. The 

course of the Tokyo Marathon14 takes the route moving 

from the west to east, and making round trips between the 

north and south sides of Tokyo. Many citizen runners finished 

the race in three to seven hours. 

Fig. 14 visualizes changes in passenger flows and 

tweeted keywords on 26 February 2012, the day on which 

Tokyo Marathon 201215 was held in Tokyo. It shows that 

many spectators moved between main spectator viewing 

points to cheer runners and tweeted situations. AnimatedRibbon 

view in Fig. 14a shows that many people gathered 

inIidabashi which is just after the first water supply point 

after the start from Shinjuku at 9:10. We can also find many 

people gathered in Hibiya which is the finish of 10 km Race 

in Fig. 14a. We select a time window in which a term 

“marathon” is bursting in each TweetBubble view shown in 

Figs. 14i, 14 ii, 14 iii, 14 iv, 14v. We can find that the sparklines 

of tweets related to Iidabashi have short peak times, 

and such peak times becomes longer as the spectator viewing 

points approach the goal. Fig. 14b shows many people 

moved from Shinjuku and Iidabashi to Ginza. Ginza is the 

halfway point. Runners make the turn at Asakusa (Fig. 14b), 

then pass through Ginza again. Ginza is therefore the most 

popular spectator viewing points. Fig. 14c shows that many 

people move from Ginza to Toyosu that is a transfer point 

to Tokyo Big Sight (Goal of Tokyo Marathon). 

 

9 EXPERTS REVIEW 
The main target users for our system are staffs of train operating 

companies. We therefore interviewed four domain 

experts (all males and ages 40-60) who specialized and had 

expert knowledge in train operating systems of Tokyo 

Metro, and obtained their feedbacks of our exploration system. 

All experts were familiar with visualization systems, 

but only one of them was familiar with 3D software. 

We first briefly explained our system overview and 

visual encoding, and then demonstrated to them the four 

case studies that we presented in Sections 8.1, 8.2.2, 8.3.1, 

and 8.4.2. 

Most of them thought that each view (HeatMap, AnimatedRibbon, 

andTweetBubble view) is useful tools for 

them, and the system can be a useful tool for their work. 
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Our system can support the evidence-based improvements 

of customer services, the results of visualization 

may throw light on facts that even station staff did not 

know or give evidence for the situations that they understood 

somehow. 

Experts commented that HeatMap view enabled them to 

roughly grasp crowded time periods and sections, however 

it was difficult to understand what happened in the 

Fig. 13. Visualization of passenger flows on 20 August 2012, 
the day on which a parade by London Olympic medalists was 
held in Ginza. 
13. http://www.joc.or.jp/english/londonolympics/parade.html 

14. Tokyo Marathon 2012 course, http://www.tokyo42195.org/ 

2012_en/map/ 

15. http://www.tokyo42195.org/2012_en/ 
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concrete such as some lines resumed. AnimatedRibbon 

view helped them to understand amount of flows and the 

overview of movement on the whole network than using 

HeatMap view. Fig. 11 shows only some selected lines, but, 

it is better to show all lines on AnimatedRibbon view to 

understand relationships with other lines. However, 3D 

view in AnimatedRibbon view was hard to see detailed situations 

when multiple lines were complicatedly crossing 

each other. 

Some experts commented that TweetBubble view was 

hard to see, and recommended that it was better to just 

arrange in order from highest frequency keywords. Tweet- 

Bubble view enabled them to understand the situation during 

the unusual events, and some experts suggested that 

they wanted to easily access to more detailed information, 

e.g., by categorizing them (such as outside situation, transfer 

methods, or improvement status), drilling down keywords, 

or filtering by multiple keywords. Moreover, one 

expert recommended that it would be easy to recognize 

what happened in each situation by simultaneously displaying 

AnimatedRibbon view and TweetBubble view, e.g., 

by overlaying word-cloud on AnimatedRibbon view. 

Two experts commented that they wanted to visually 

explore which routes passengers used for taking detours 

after disasters in more detail. One experts commented 

“many similar situations were occurred by earthquakes or 
accidents, but they were not the same. So, if we can compare 

multiple situations and recognize the differences, the system 

will become more useful.” 

Some experts also commented “By using this system, we 

can understand influence of passenger flows among different 

lines to some extent, and obtained knowledge can be 

used for optimal operation of transportation systems, and 

navigation of passengers.”, “We recognize extraordinary 

congestion in Ginza area, Shibuya, Shinjuku, Ikebukuro stations 

(in the case of Section 8.4.1), such kinds of information 

can be used for allocation of sufficient staff and other 

resources in each station.”, and “Understanding of passenger 

flows per time would have possibility to help to plan 

extra trains.” 

 

SYSTEM ARCHITECHTURE 
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Data Preprocessing Module: 
In this module  we have to create Data set for bank dataset it 
contain set of table such that customer details, account details, 
transaction details overall marks details for last year 
Data Migration Module with Sqoop 

Sqoop is a command-line interface application for 
transferring data between relational databases and 
Hadoop 

Data Analytic Module with Hive 
Hive is a data ware house system for Hadoop. It runs 
SQL like queries called HQL (Hive query language) 
which gets internally converted to map reduce jobs 

 
Data Analytic Module with Pig 

Apache Pig is a high level data flow platform for 
execution Map Reduce programs of Hadoop. The 
language for Pig is pig Latin. Pig handles both structure 
and unstructured language 

Data Analytic Module with MapReduce 
MapReduce is a processing technique and a program 
model for distributed computing based on java. The 

MapReduce algorithm contains two important tasks, 
namely Map and Reduce. 
 
 

The MapReduce algorithm contains two important tasks, 

namely Map and Reduce. Map takes a set of data and converts 

it into another set of data, where individual elements are 

broken down into tuples (key/value pairs). Secondly, reduce 

task, which takes the output from a map as an input and 

combines those data tuples into a smaller set of tuples. As the 

sequence of the name MapReduce implies, the reduce task is 

always performed after the map job. 

GENERAL ALGORITHM 

The major advantage of MapReduce is that it is easy to scale 

data processing over multiple computing nodes. Under the 

MapReduce model, the data processing primitives are called 

mappers and reducers. Decomposing a data processing 

application into mappers and reducers is sometimes 

nontrivial. But, once we write an application in the 

MapReduce form, scaling the application to run over 

hundreds, thousands, or even tens of thousands of 

machines in a cluster is merely a configuration change. This 

simple scalability is what has attracted maprogrammers to 

use the MapReduce model 

 
 
10 CONCLUSION 
We proposed a novel visual fusion environment to explore 
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changes in flows of passengers on the Tokyo Metro and 

their causes and effects by using more than four years’ 
worth of data extracted from the smart card system and 

Twitter. 

Our novel approach enables us to extract and visualize (1) 

passenger flows on a complicated metro network from large 

scale data from the smart card system and (2) unusual phenomena 

and their propagation on a spatio-temporal space. 

Moreover, (3) we integrated two forms of big-data (data 

from the smart card system and Twitter) into a visual exploration 

system to explore causes and/or effects of unusual 

phenomena. The case studies and reviews by train operating 

system experts showed the possibilities and usefulness of 

our system to observe real situations during the events. 

We plan to provide mechanisms for automatic detection 

and prediction of events, and prediction and control of passenger 

flows on wide and complex transportation networks 

through fusing various kinds of big data streams including 

train trips information. 
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