
2nd International Online Conference on Advanced Research in Biology, Engineering, Science and
Technology (ICARBEST’16)

Organized by
International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)

19th February 2016

FPGA IMPLEMENTATION OF LOW POWER 32 BIT RISC PROCESSOR

Niveathasaro v1, Vijayasaro V2

1
niveathasaro@gmail.com,

2
viji.saro17@gmail.com

1
PG scholar, ECE Department, JJ college of engineering and Technology, Thiruchirapalli.

2
PHD Scholar, Prist University, Thanjavur.

ABSTRACT

In this paper concerned with the design

and implementation of a low power 32bit Reduced

Instruction Set Computer (RISC) processor on a

Field Programmable Gate Arrays (FPGAs). The

processor has been designed with Verilog HDL,

synthesized using Xilinx ISE 9.1i Web pack,

simulated using ModelSim simulator and some

components have been implemented and tested on

Xilinx FPGA. The test bench waveforms for the

different parts of the RISC processor are presented

in it.

INDEX TERMS: RISC Processor, Modelsim,

Xilinix, FPGA.

I INTRODUCTION

Computer Engineering and Computer

Design are very much concerned with the cost and

performance of components in the implementation

domain. Reduced Instruction Set Computer (RISC)

focuses on reducing the number and complexity of

instructions in the machine. The RISC concept first

originated in the early 1970's when an IBM research

team proved that 20% of instruction did 80% of the

work. The RISC architecture follows the philosophy

that one instruction should be performed every clock

cycle.

There is also another kind of processor

architecture called CISC (Complex Instruction set

Computing), which is having many instructions

(nearly 100) and used to perform more complex

operations using less instructions than the RISC

processor. To reduce the number of accesses to main

memory, designers added instruction and data cache

to the processors. A cache is a special type of high

speed RAM where data and the address of the data is

stored. Whenever the processor tries to read data

from main memory, the cache is examined first.

Cache is commonly ten times faster than main

memory, so you can see the advantage of getting data

in 10 nanoseconds instead of 60 nanoseconds. Only

when we miss (i.e., do not find the required data in

the cache), does it take the full access time of 60

nanoseconds. But this can only happen once. Since

a copy of the new data is written into the cache after

a miss. The data will be there the next time we need

it. Instruction cache is used to store frequently used

instructions. Implementing fewer instructions and

addressing modes on silicon reduces the complexity

of the instruction decoder, the addressing logic, and

the execution unit. This allows the machine to be

clocked at a faster speed, since less work needs to be

done each clock period.

RISC typically has large set of registers.

The number of registers available in a processor can

affect performance the same way a memory access

does. A complex calculation may require the use of

several data values. If the data values all reside in

memory during the calculations, many memory

accesses must be used to utilize them. If the data

values are stored in the internal registers of the

processor instead, their access during calculations

will be much faster. It is good then to have lot of

internal registers.

Architectural design of a 32-bit floating

point RISC processor from Specifications.

1. Behavioral modeling of Design blocks.

2. Design of stimulus modules to test the functionality
of Design blocks.
3. Synthesize design to extract Gate level net list.

This RISC Processor is designed to

incorporate 20 basic instructions involving

Arithmetic, Logical, Data Transfer, Control

instructions and Floating Point arithmetic operations.

To implement these instructions the design

incorporates various design blocks like Control Logic

Unit (CLU), Arithmetic Logic Unit (ALU),

Multiplexer, Accumulator, Program Counter (PC),

Instruction Register (IR), Memory, Clock Generator,

Resetter and additional glue logic like buffer, OR

gate.The Instruction format contains first five MSB’s

as OPCODE and remaining 27 bits as ADDRESS

BUS. The paper involves design of a simple RISC

Processor and simulating it. A Reduced Instruction

Set Computer (RISC) is a microprocessor that has

been designed to perform a small set of instructions,

with the aim of increasing the overall speed of the

processor and consumes low power of the processor.

II. LITERATURE SURVEY

1. Michacl slater “Microprocessor-Based Design (a

comprehensive guide to effective hardware

design)” 2001 pp.55

National semi-conductor’s 32000 family

was the first to be designed from the start as a 32 bit

Microprocessor and is popular in high performance

application.The Intel and Motorola families dominate

and are available from several alternate source.These

16 and 32 bit microprocessor include multiply and

8

mailto:niveathasaro@gmail.com
mailto:viji.saro17@gmail.com

2nd International Online Conference on Advanced Research in Biology, Engineering, Science and
Technology (ICARBEST’16)

Organized by
International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)

19th February 2016

divide instruction and a variety of addressing mode

and datatype.Address bus with typically is 20-24

bit,Yielding on effective addressing range of 1-16

Mega Byte(MB).

2. Douglas V.HALL “Micrprocessor and

Interfacing (Programming and Hardware) 2005

pp.547

most instruction as register-to register operations, a

sufficient amount of CPU general purpose registers

has to be provided. A sufficiently large register set

will permit temporary storage of intermediate results,

needed as operands in subsequent operations, in the

CPU register file.

The Intel 80386 has a 32 bit ALU so it can

operate on 32 bit data words, program can have as

many as 16,384 segment the virtual address space

then is 16,384 segment X 4 Giga Byte(GB) are

about 64 bytes Tera Byte(TB).A 32 bit address bus

allows an 8036 to address upto Giga Byte(GB) of

physical memory.The 80386 has Intel 8086 mode.

. The 80386 processor is available in two

different version the 386DX and the 386SX has a 32

bit address bus and data bus. It is package in the 132

pin ceromic pin grid array package.The 386SX,

which is package in the 100pin flat pack has same

internal architecture as the 386DX.But has the only a

24 bit address bus and a 16 bit data bus the lower cost

package of the case of interfacing to 8 and 16 bit

memory and peripherals mode. The 386SX sutiable

for using lower cost system.

3. R.Radhakrishnan ”Microprocessor and

Microcontroller architecture,program and

application”2007 pp.397

In the Pentium processor architecture has a

some of major characteristics it is a super scalar and
the pipelined are also the super pipelined

architecture and the enhanced speed.

In the Pentium chip floating point access

unit and performance wise also it is high. It

generates 13w power of the output and it can

separates the 2 cache memories.

4. HOSHI P.Mistry ”Microprocessor-1: Way

Through 8085 ” 2003 pp.143-147

From this book we referred the ALU,

program counter, Accumulator, instruction register

and also some main parts of the Architecture pp.8-

11.In also the data transfer instruction are the

move,store,load pp.44-45

5. Luker, Jarrod D., Prasad, Vinod B., “RISC

system design in an FPGA”, 2001 pp.186-188

In this paper, we implement the 32-Bit low

power RISC processor . which has been fabricated as

part of a processor, consists of a typical RISC-CPU,

Two simple special-purpose processing registers are

to performing the RISC processor. This paper has to

employing a large number of simple general purpose

processors, or in any other embedded system or

verilog.

6. Nikos A. Nikolaou, Dionisios N. Pnevmatikatos

Article: “Microprocessors and Microsystems”,

2001 pp.123-125

In order to facilitate the implementation of

III. BLOCK DIAGRAM

Figure 3.1 Block diagram of RISC processor

System Architecture:

The RISC processor presented in this paper

consists of three components as shown in Figure,

these components are, the Control Unit (CU), the

Data Path, and the ROM. The Central Processing

Unit (CPU) has 17 instructions. In the following

sections we will describe the design of the three main

components of the processor.

3.1.1 Design of the Control Unit:

The control unit design is based on using

FSM (Finite State Machine) and we designed it in a

way that allows each state to run at one clock cycle,

the first state is the reset which is initializes the CPU

internal registers and variables. The machine goes to

the reset state by enabling the reset signal for a

certain number of clocks. Following the reset state

would be the instruction fetching and decoding states

which will enable the appropriate signals for reading

instruction data from the ROM then decoding the

parts of the instruction. The decoding state will also

select the next state depending on the instruction,

since every instruction has its own set of states, the

control unit will jump to the correct state based on

the instruction given. After all states of a running

instruction are finished, the last one will return to the

fetch state which will allow us to process the next

instruction in the program. Figure .2 shows the state

diagram for the control unit.

9

http://arnetminer.org/person/nikos-a-nikolaou-110171.html
http://arnetminer.org/person/dionisios-n-pnevmatikatos-906041.html
http://arnetminer.org/conference/microprocessors-and-microsystems-5115.html

2nd International Online Conference on Advanced Research in Biology, Engineering, Science and
Technology (ICARBEST’16)

Organized by
International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)

19th February 2016

3.1.2 Design of the Data Path:

The Data Path consists of subunits that are

necessary for performing all of arithmetic and logic

operations. A Data path is a hardware that performs

data processing operations [8, 9, 10, and 11]. It is one

of two types of modules used to represent a digital

system, the other being a control unit. The Data path

model we designed consists of the units necessary to

perform all the operations on the data selected by the

control unit. The components include a Register File,

Arithmetic Logic Unit, Memory Interface and

Branching Unit as shown in figure. The register file

holds the table of the 32 general purpose registers

available to the CPU, it has two output ports

(output1, output2) and one input port, also it has a 16

bit bus connected directly to the Control Unit to pass

immediate data. The ALU design consists of two

input ports and one output port which mainly

performs operations on two operands. It has a design

similar to the control unit which selects an operation

based on a code given by the ALUCL. The memory

interface was designed to accommodate simple

load/store operations with the 16x32 memory. The

effective address is calculated by adding the content

of the address register and the immediate data. The

Branch Unit calculates a given condition by the

control unit and raises a branch flag whether the

condition is met or not, and if the flag is raised, it

sends the branch address back to the control unit in

order to replace the program counter. The control

lines coming from the control unit operate all the

units in the data path. The path starts from the

register file that has two output ports which are

connected to all the other units, after that the

processing is done by one of the other units then

finally returned back to the register files input port

using the multiplexer. The signals used in the data

path are forwarded from the control unit to each

subcomponent as needed.

3.2 ARICHTECTURE OF 32- BIT RISC

PROCESSOR:

This is the RISC processor architecture. It

consists of the accumulator, buffer, Program counter,

alu, resetter, control and decode, clock generator,

instruction Register, mux, memory.

3.2.1 Arithmetic and Logic Unit:

The Arithmetic logic unit performs all the

operations specified in the specifications of the

processor. It performs around 20 instructions. The

logic for all the instructions is mentioned in this

module.

The floating point instructions in the

processor are written in this module as functions.

They don’t involve the clock or the reset signal.

They are just combinational circuits that are

implemented by internal registers, counters and other

small combinational circuits. The arithmetic logic

unit consists of a temporary register that is used for

operations between the Accumulator and the data on

the data bus. This register is later assigned to the

Accumulator.The ALU as in this module can be

programmed to work in any fashion desired. Any

application or control desired can be obtained by

writing a function of the application and running it in

the ALU module with the appropriate control signals

from the Control Logic Decoder.

Figure 3.2 RISC Processor Architecture

3.2.2 Resetter:

The Resetter is a component that generates

the internal reset signal. InRst taking the external

reset request from the external world. The output

from this module supplies all the components with

the reset signal that initializes all the hardware

components in the system.

3.2.3 Clock Generator:

The clock generator is a combinational

circuit that generates clock signals that are

responsible for the function of the entire processor.

The clock signal gets its input from a crystal

oscillator that is connected from an external source.

This is not shown in this module. The connection is

understood to be implicit.The three clocks are

generated as per the following logic. The first clock

10

2nd International Online Conference on Advanced Research in Biology, Engineering, Science and
Technology (ICARBEST’16)

Organized by
International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)

19th February 2016

Clock1 synchronizes with the external crystal

oscillator. While Clock2 changes at the negative

edge of Clock1. So it has a period twice that of

Clock1 and changes for the negative edge of Clock1.

The third clock Fetch changes at the positive edge of

Clock2. So it has a period twice that of Clock2, or

effectively it has a period 4 times that of Clock1, and

changes only for every other negative edge of the

external crystal oscillator.This sort of pattern is

generated so that, eight distinct control signals can be

generated by taking different combinations of these

clocks.

3.2.4 Program Counter:

The program counter is one of the essential

parts of the RISC processor. It keeps on

incrementing the address of the next address location.

It is nothing but a simple counter that keeps on

incrementing when the control signal INCPC appears

at the input. When the LDPC signal is given, the

program counter is loaded with the value or lROUT.

This takes place at the negative edge of the Fetch

signal.

3.2.5 Buffer:

The Buffer is used between the ALUOUT

and the Data Bus. Under normal circumstances the

ALUOUT is connected to the Accumulator. But

when WR is 1 then, ALUOUT is amplified and put

on the Data Bus. Otherwise the ALUOUT is

connected to the Accumulator.

3.2.6 Accumulator:

The accumulator is a 32 bit register that is used

to store one of the operands or the result of an

operation. It is connected to both the ALU and the

Data bus through a buffer. All Accumulator

operations are synchronized with the Clock 1 and

InRst. When the LDACC is one with Clock 1 going

through its positive edge, the Accumulator is loaded

from the ALUOUT or the data from the Accumulator

is put on the Data Bus.

3.2.7 Instruction Register:

The instruction register is a 32-bit register that

is used to store the instruction address after it is

fetched from the memory. This is used to go to the

address location in the memory that contains the

Opcode and the operand. This synchronizes with the

clock 1 and InRst. For the positive edge of the Clock

1 when LDIR is one, the instruction is loaded into the

instruction register.

3.2.8 Multiplexer:

The Multiplexer is used to multiplex the

outputs of the instruction register and program

counter i.e. IROUT and PCOUT respectively. This is

done as, during the same clock cycle (Fetch) the

memory is accessed by both these registers. As a

result we need to multiplex both of them.

3.2.9 Memory:

The Memory in the RISC processor is located

inside the processor. This decreases the memory

access times and improves the speed of the system.

There are only two instructions that are used to

access the memory, the load and Store accumulator

instructions. This is basically a RAM that is present

inside the memory.

3.2.10 Control and logic decoder:

The Control Logic Decoder is the most

important part of the RISC processor. It is central

nervous system of the entire processor as it outputs

the critical control signals that are responsible for the

function of the processor. It has the three clock

signals and the 5-bit Opcode as inputs.Depending on

the Opcode generated an individual set of control

signals are generated that makes the RISC processor

work like it does. The end user specifies this pattern

of control signals that decides how the processor

should function.The control logic is nothing but a

decoder that generates different combinations based

on different inputs given.

IV. RESULTS AND DISCUSSIONS

This chapter describes the design and

implementation of RSIC Processor on FPGA. It

describes, in brief, about simulation had been done in

XILINX Software using Verilog Language and

implementation done using ALTERA FPGA

BOARD. System development is done in incremental

steps. At each successive step, test cases are

developed and simulation is done to verify the correct

behavior. At any step, if any violation from the

expected behavior is found, the design entry is

modified to rectify the violation and the process is

repeated until all design expectations are met.

Initially, after completing the design entry, simulation

is done using several test benches.

4.1 Simulation Results

4.1.1 Output of addition operation:

Figure 4.1: Simulation Result of addition

11

2nd International Online Conference on Advanced Research in Biology, Engineering, Science and
Technology (ICARBEST’16)

Organized by
International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)

19th February 2016

4.1.2 Output for Subtraction Operation:

Figure 4.2: Simulation Result of subtraction

4.1.3 Output for OR operation:

Figure 4.3: Simulation Result of OR

4.1.4 Output for AND operation:

Figure 4.4: Simulation Result of AND

4.1.5 Output for XOR operation:

Figure 4.5: Simulation Result of XOR

4.1.6 Output for XNOR operation:

Figure 4.6: Simulation Result of XNOR

4.1.7 Output For Left Shift:

Figure4.7: Simulation Result of left shift

4.1.8 Output For Load Operation:

Figure 4.8: Simulation Result of load operation

4.1.9 Output For Store Operation:

Figure 4.9: Simulation Result of store operation

12

2nd International Online Conference on Advanced Research in Biology, Engineering, Science and
Technology (ICARBEST’16)

Organized by
International Journal of Advanced Research in Biology, Engineering, Science and Technology (IJARBEST)

19th February 2016

V. CONCLUSION AND FUTURE WORK

The 32-bit RISC processor has been

implemented using Xilinx FPGA. The simulation

result is obtained and verified using ModelSim

Simulator. The programming language used is

Verilog HDL. We are using the hardwired control and

decode unit, which is more efficient than the micro-

programmed control.. The proposed RISC processor

performs the arithmetic, logical, relational, load, store

etc.

In future implementation of 64 bit RISC

processor can be attempted with more pipelining

stages. Also there are other high performance

microprocessor architectures like VLIW (very long

Instruction word), and EPIC. We have planned to

introduce low power techniques like clock gating,

and power gating etc., to reduce the power

consumption in the system.

REFERENCES

1. Wayne Wolf, FPGA Based System Design, Prentice

Hall, 2005.

2. Luker, Jarrod D., Prasad, Vinod B., “RISC system

design in an FPGA”,MWSCAS 2001,

v2,2001,pp.532536.

3. John L. Hennessy, and David A. Patterson,

“Computer Architecture A Quantitative Approach”,

4th Edition; 2006.

4. Vincent P. Heuring, and Harry F. Jordan,

“Computer Systems Design and Architecture”, 2nd
Edition, 2003.

5. Computer Organization: Patterson & Hennessy.

6.Rainer Ohlendorf, Thomas Wild, Michael

Meitinger, Holm Rauchfuss, Andreas Herkersdorf,

“Simulated and measured performance evaluation of

RISC based SoC platforms in network processing

applications”, Journal of Systems Architecture 53

(2007) 703–718.

7.Computer Architecture: Hennessy & Patterson.

8.Jiang, Hongtu; “FPGA implementation of

controller data path pair in custom image processor

design”; IEEE International Symposium on Circuits

and Systems Proceedings; 2004, p V141V144.

9. Jiang Hongtu, Owall Viktor, “FPGA

implementation of controller datapath pair in custom

image processor design”, IEEE International

Symposium on Circuits and Systems, Proceedings v

5, p V141 V144.

10. Michacl slater “Microprocessor-Based Design (a

comprehensive guide to effective hardware design)”

pp.55

11. Douglas V.HALL “Micrprocessor and

Interfacing (Programming and Hardware)pp.547

13

