RISK ASSESSMENT FOR MACHINERY SHOP

IN AUTOMOBILE INDUSTRY

T.Sathiyamoorthy¹, R.Isaac² S.Kamalakannan³

1 PG Scholar, Department of Mechanical Engineering, Knowledge Institute of Technology, Tamilnadu, India. sathiyadhivya1985@gmail.com

2,3 Asst. Professor, Department of Mechanical Engineering, Knowledge Institute of Technology, Tamilnadu,

India.

Keywords—Automobile industry, Workplace Hazards, Machine, Risk, Welding, Assembly, Manual Handling. ABSTRACT

The automotive industry occupies a significant place in the Indian economy. The well-developed industry acts as a catalyst and gives energy to the economic growth of the country and also increased accidents to the workers due to work place hazards. In the manufacturing of auto components carriers with them workplace hazards, the hazards and risks connected with welding operation ns, assembly operation by machine or manual in frame body shock absorber and muffler manufacturing industry was identified and controlled using risk matrix techniques. The findings reveal that major tasks were associated with the events of material handling, machine operation, maintenance of any machinery, packing and housekeeping. Hazards of varying degrees were identified and the associated risk was classified with trivalent risk, Low risk, Medium risk, High risk, Very high risk. The tasks carried out with those hazards and risks are suggested with control measures and recommendations.

1. INTRODUCTION

The auto mobile manufacturing industry is a wide range of companies and organizations involved in the design development manufacture, marketing, and selling of motor spare parts. It is one of the world's most important economic sectors by revenue. It is one of the hazardous industries. Hence it contains hazardous nature of process, activities, locations, equipment and substance. In the same way the Shock absorber and frame body manufacturing being hazardous operation process а has considerable safety risk to workers. Unsafe conditions and practices in automotive industries lead to a number of accidents and causes loss and injury to human, material damages, loss, cases, interrupt production etc.

It may lead frequent personal injury, In order to control those happenings risk assessment an important step to protect the workers as well as complying with the law. For that risk matrix technique is used in this project. It helps you to focus on the risks that really matter in the industry the ones with the potential to cause real harm. In many instances, straight forward measures can readily control risks. For example ensuring machine guards punctually so people do not hurt or injured, or cables and objects are kept away from gang way to ensure people do not trip, or safe operation in work place loads to prevention of injury. For most, that means simple. Cheap and effective measures to ensure your most valuable asset your workers protected. The law does not expect you to eliminate all risk. But you are to protect people as far as is reasonably practicable. This project tells you how to achieve that with a minimum of activity

1.1 DYNACHROME OPERATIONS

Grinding, hardening, polishing operation has carried out before the chrome plating operations. The operator inserts the rods into the openings of position one in the turn table. After all 40 rods have been inserted, the operator activates the clamping mechanism for the rods. The rods are clamped pneumatically. The turntable indexes 180 degrees which presents the rods to the pickup position where they are clamped in the flight bar ready for collection by the transporter. Once the table has indexed the operator is able to load the second position with the next 40 Rods. Unloading procedure will be carried out by an identical table but operated in reverse.

The roads will take in to the Mother tank for dosing for chrome process and transfer pumps for chrome and etch process Anodes for hard chromium bath Cathode 1 Cathode for etching bath. The roads have handling by using Transport equipment. In addition to the proximity switches, mechanical actuated safety switches are used for each transporter which provides anti-collision protection limitation for vertical movement. When these switches are actuated the corresponding drive is interrupted.

The lowering movement is interlocked; simultaneously a functional test is affected in order to preclude double occupation of a bath by means of a sensor via the control system. The transporter is moving on a rail which is mounted on the sub structure. Installation of a titanium tray below the complete Dyna Chrome line except in the loading and unloading area. The titanium tray will be installed with a slope in direction to the collecting tank. The main part of the splashes will be collected in the titanium tray. In case of a leaking or overflow of a tank the fluid will be caught in the tray and will flow by gravity in a collecting tank which is part of the supply from HEIL. Contaminations with chrome acid have to be rinsed out. The road will be unloaded and the road will be loaded to the oven. The rods will be heated in the four stages in 300 degree temperature then the rods will be cooled by using the fan and send to the polishing process.

1.2 SAFETY STANDARDS

EMSEC (Engineering Machine Safety Exposure Control) the primary purpose of these International Standards is to provide designers with an overall framework and guidance for decisions during the development of machinery to enable them to design machines those are safe for their intended use. European standards for the Safety of machinery form the following structure:

Type-A standards (basic safety standards) giving basic concepts, principles for design and General Aspects that can be applied to machinery.

Type-B standards (generic safety standards) dealing with one safety aspect or one type of

Safeguard that can be used across a wide range of machinery

Type-B1 standards on particular safety aspects (for example, safety distances, surface temperature, noise) for example: EN ISO 13849-1, EN ISO 13857

Type-B2 standards on safeguards (for example, two-hand controls, interlocking devices, pressure sensitive devices, guards).

Type-C standards (machine safety standards) dealing with detailed safety requirements for a Particular machine or group of machines. When a type-C standard deviates from one or more technical provisions dealt with by this International Standard or by a type-B standard, the type-C standard takes precedence.

2.1 METHODOLOGY

Risk assessment is carried out in series of related activities which builds up a picture of the hazards and vulnerabilities which explain disaster events. The following step has followed in the risk assessment.

Risk is the likelihood that exposure to a hazard will lead to an injury or a health issue. It is a measure of the probability and potential severity of harm or loss. Risk assessment forms crucial early phase in the disaster management planning cycle and is essential in determining what disaster mitigation measures should be taken to reduce future losses. Any attempt to reduce the impact of disaster requires an analysis that indicates what threats exist, their expected severity, who or what they may affect, and why. Knowledge of what makes a person or a community more vulnerable than another added to the resources and capacities available determines the steps we can take to reduce their risk.

3.1 Identify the Hazard

The techniques used here to find out the hazard by Risk Matrix, It used here to categories the level of risk factor. At initially checklist has to be frame to locate the hazards.

3.2 Check List Equipment Control Systems

No.	QUESTIONS	YE	Ν	N/	REMARK
		S	0	Α	S
1.	All switches &				
	indicators are				
	clearly marked,				
	readily visible,				
	obvious,				
	understandable				
	and in the local				
	language?				
	All				
	communication				
	s between				
	machine and				
	operator must				
	be in the local				
	language. All				
	push buttons,				
	readouts,				
	instructions,				
	and on lights,				
	etc.				

	A 11 1 1 0			
2.	All switches &			
	indicators as			
	well as LOTO			
	devices are			
	located outside			
	the danger area.			
	Machine power			
	controls, such			
	as power			
	disconnect (on-			
	off switch) are			
	capable of			
	being locked in			
	the OFF			
	position, but are			
	not capable of			
	being locked in			
	the ON			
3.	All switches &			
	indicators can			
	be operated			
	safely. The			
	operator must			
	not be exposed			
	to additional			
	hazard, stepping			
	up, reaching			
	over, or			
	entering the			
	danger zone to			
	operate control			
	switches and			
	buttons.			
4.	The system is			
	designed to stop			
	safely in an			
	emergency.			
5.	The control			
	system is			
	designed so that			
	failure or			
	bypass of a			
	component will			
	prevent starting			
1	or recycling.			
6.	The controls are			
	situated or			
1	guarded so that			
	they cannot be			
	accidentally			
	initiated			
L		i	t	1

7.	Two handed controls are self- checking so that if one
	Button fails or is wedged close, the system will not operate.
8.	All visible / audible alarm signals are clear

3.1 Risk matrix

Risk Matrix is used at some stage in risk assessment to characterize the various levels of risk as the product of the harm probability categories and harm severity categories. This simple mechanism to increase visibility of risks and leads to provide the solution.

This methodology has seven stages as listed below; Likelihood has the possibility to occurrences of the event in six states are practically impossible, very unlikely, unlikely, likely, very likely and imminent or certain.

The action priority of the risk has been calculated in five levels are no action required, can be deal with as convenient, deal with as soon as possible, needs resolving quickly and immediate action required.

Table: likelihood

The exposure level of the risk has been calculated in six levels are very rare, rare, unusual, occasionally, frequently and continuous

Table: Exposure

The injury intensity of the risk has been calculated in six levels are loss time, minor injury, major injury, single fatality, multiple fatalities and many fatalities.

Table Extent of Injury

The property damage level has been calculated in six states are from zero to crore and above.

Table Property Damage

The possible consequences of the risk has been calculated in six levels are noticeable, important, Serious, very serious, disaster and catastrophe.

Table Possible Consequences

The action priority of the risk has been calculated in five levels are no action required, can be deal with as convenient, deal with as soon as possible, needs resolving quickly and immediate action required.

Table Risk Factor

The risk rating has been calculated in five levels are trivial or low risk, low risk, medium risk, high risk and very high risk.

Table Risk Rating

RESULTS AND DISCUSSIONS

This process used here to determine the likelihood that people exposed to injury, illness or disease in the workplace arising from any situation identified during the hazard identification process prior to consideration or implementation of control measures. Risk occurs when a person is exposed to a hazard. Risk is the likelihood that exposure to a hazard will lead to injury or health issues. It is a measure of probability and potential severity of harm or loss.

Totally 31 critical machines has taken for the assessment, by using the check sheet for every machines the hazards can be established, then the below keys are used and give the code for it. The risk has been categorized finally as trivial or low risk, low risk, medium risk, high risk and very high risk, for the medium risk, high risk and Very High risk has given the first priority to resolve the problem. From the evaluations the recommendations and control measures has given

Trainings

Duration	Department	Position	Training covered topic
March`16	Welding section	Operator	1.) Material handling, 2.) 2 Hand power switch, 3.) PPE necessary, 4.) Trolley handling 5.) SOP 6.) Fire 7.) Near miss reporting etc.,
March`29	Welding section	Operator	 Material handling, 2 Hand power switch, PPE necessary, Prolley handling SOP Fire Near miss reporting etc.,

RECOMMENDATIONS

LOCATI	HAZARD	HAZARD	RECOMMENDAT	
ON	TYPE	IDENTIFIE	IONS	
		D		
		FROM		
		THE		
		ASSESSM		
		ENT		
Front &	Working	Falling	Full hand gloves	
Rear	Environm	object &	to be worn by all	
welding	ent -	Collision	the operators	

		•	
shop	Manual	of objects	working in the
	Handling	-	Welding
		Operator	operations.
		losing the	Training to
		parts that	be provided and
		leads to	display the SOP
		minor	clearly to view by
		injury like	the operator in
		as burn	the machine
		injury,	
		abrasion	
		injury, cut	
		injury	
		etc.,	
Front &	Working	Hit by	All Conveyor's to
Rear	Environm	moving	be guarded to
welding	ent -	object-	avoid hitting the
shop	Physical	Having the	parts to the
shop	Hazards	more	operator or
	11020105	probabiliti	persons who
		es to hit	moving
		with the	e e
			in the egress
		parts by	
		the	
		conveyor(N	
		ot	
		guarded),	
		that may	
		leads to	
		minor	
		injury like	
		as burn	
		injury,	
		abrasion	
		injury, cut	
		injury	
		etc.,	
Front	Working	Suffocatio	Sensors to be
&Rear	Environm	n - Persons	installed to
welding	ent -	may	Identify the
shop	Chemical	Suffocated	leakage of co2
	Hazards	due to lack	and Argon gas
		of oxygen	
		if Co2 &	
		Argon	
		leakage	
Front &	Working	Fumes	Exhaust
Rear	Environm	environm	ventilation
welding	ent -	ent -	system should be
shop	Physical	Welding	fix for every
	10.000	0	

Hazards	exposed	welding machines
	fumes	to avoid heat and
	making the	fume atmosphere
	environme	contains fumes
	nt hot	
	and	
	inhalation	
	of metal	
	oxide leads	
	to lung	
	diseases	
	eye irritate	
	and	
	fatigued	

LITERATURE SURVEY

Incorporating human factors into a simplified "bowtie" approach for workplace risk assessment

Antoni's Targoutzidis et al (2010) provided a simple methodological tool for the incorporation of human factors in the process of risk assessment. It is based on the classical Event Tree Analysis (ETA), i.e. the analysis of a situation to all its possible mutual exclusive subsequent steps. Therefore, it starts with a Fault Tree Analysis (FTA), where potential incidents are analyzed backwards, by means of necessary pre-conditions. ETA and FTA are very useful tools for risk assessment as they offer a structured analysis and identification of all possible outcomes. The human error supplement will be included and the formula is: $p = Po (2^u -$ 0.5). These factors are intuitively marked by the analyst, based on context-specific information to adjust the initial probabilities of accident by databases or historical data. Intentional risk-taking is considered to be a product of risk perception and risk motivation that includes economic, social or other benefits. Through a simple formula, the initial

'Nominative" failure probability is adjusted in order to take these influences into account. The simple tool that can help incorporating human factors and situation specific conditions in workplace risk assessment.

CONCLUSION

This project has provided an excellent opportunity and experience in making safety

control measures for task like material handling, Machine operation, working near the machineries , loading, unloading and housekeeping in welding and assembly machinery shop. Although all hazards should be addressed, resource limitations usually do not allow this to happen at one time. Hazard identification and risk assessment can be used to establish priorities so that the most dangerous situations are addressed first and those least likely to occur and least likely to cause problems avoid. major can be The recommendations are provided to avoid the occurrence of such hazards. From the awareness training to the operator had become the effective method for them to awake and control the hazards and the self-awareness for work in the shop, Induction training only will not sustain the workers to functioning near or with the machineries.

REFERENCES

- 1. Antonis Targoutzidis, 2010, "Incorporating human factors into a simplified ,,,,bow-tie" approach for workplace risk assessment" Safety Science, 48 145–156.
- Baba Md Derosa, 2015, A Study on Ergonomic Awareness among Workers Performing Manual Material Handling Activities" Social and Behavioral Sciences, 195 1666 – 1673.
- 3. Darren M. Roffey et al., 2010, "Causal assessment of workplace manual handling or assisting patients and low back pain: results of a systematic review, The Spine Journal" 10 639–651.
- Elizabeth Bluff, 2014, "Safety in machinery design and construction: Performance for substantive safety outcomes" Safety Science, 66 27–35.
- 5. J. Sammarco, 2012, "A visual warning system to reduce struck-by or pinning accidents involving mobile mining equipmen", Applied Ergonomics, 43 1058 -1065.
- 6. James M. Antonini et al, 2015, "Effect of short-term stainless steel welding fume inhalation exposure on lung inflammation,

injury, and defense responses in rat" Toxicology and Applied Pharmacology, 223 234–245.

- 7. Jozef Zurada et al, 2012, "Classifying the risk of work related low back disorders due to manual material handling tasks" Expert Systems with Applications, 39 1125–11134.
- 8. Karin Reinhold et al, 2015, "Practical tool and procedure for workplace risk assessment: Evidence from SMEs in Estonia" Safety science, 71 282–291.
- 9. Kogler Robert et al., 2015, "Analysis of occupational accidents with agricultural machinery in the period 2008–2010 in Austria" Safety Science, 72 319–328.
- 10. Manay Kifle et al, 2014, "Work related injuries and associated risk factors among iron and steel industries workers in Addis Ababa, Ethiopia" Safety Science, 77 211– 216.
- 11. Margaret McCallig et al., 2010, Evaluating worker vibration exposures using selfreported and direct observation estimates of exposure duration" Applied Ergonomics, 42 37-45.
- 12. Jan hovden et al., (2009), "Is there a need for new theories, models and approaches to occupational accident prevention?" Dep. of Safety Research, 66 233-246.
- Mitchell Dinham, 2013, "Autonomous weld seam identification and localisation using eye-inhand stereo vision for robotic arc welding" Robotics and Computer-Integrated Manufacturing, 29 288–301.
- 14. O.N. Aneziris et al, 2013, "Quantification of occupational risk owing to contact with moving parts of machines" Safety Science, 51 382–396.
- 15. Odile Heran-Le Roy et al, 1999, "Manual materials handling and related occupational hazards: a national survey in France" International Journal of Industrial Ergonomics, 24 365 377.
- 16. Michael F. Hilton et al (2010), "Associations between psychological distress, workplace accidents, workplace failures and workplace successes Int Arch Occupation Environmental

Health " Renewable and Sustainable Energy Reviews, 37 509–516.

- 17. Pascal Poisson et al., 2015, "Observation and analysis of 57 lockout procedures applied to machinery in 8 sawmill" Safety Science, 72 160–171.
- 18. Gerard I.J.M zwetsloot et al(2013), "The case for research into the zero accident vision The Netherlands Foundation for Applied Scientific Research" Computers & Industrial Engineering, 63 135–149.
- 19. Simo Salminen, 2015, "Workplace Safety and Health" Finish Institute of Occupational Health, 2 727–732.
- 20. Yuvin Chinniah, 2015, Analysis and prevention of serious and fatal accidents related to moving parts of machinery, Safety Science, 75 163–173.