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Abstract— The project aims to develop a system that predicts 

bugs in GitHub repositories while also detecting the 

emotional content associated with bug reports. The project 

leverages linguistic elements, self-adjusting feature 

extraction techniques, and word-embedding learning 

models to achieve these objectives. The system utilizes bug 

reports from GitHub repositories as input data. It employs 

linguistic analysis techniques to extract relevant features 

from the bug reports, considering the linguistic elements 

present in the text. These features are then processed using 

self-adjusting algorithms to adaptively identify and 

prioritize the most informative elements for bug prediction. 

In addition to bug prediction, the system incorporates 

emotion detection capabilities using word embedding 

learning models. Word embeddings capture the semantic 

meaning of words and enable the system to identify emotions 

expressed within the bug reports. By considering emotions, 

the system can provide insights into the affective aspects 

associated with reported bugs. The combination of linguistic 

feature extraction, self-adjusting algorithms, and word 

embedding-based emotion detection contributes to 

improving bug prediction accuracy and providing a more 

comprehensive understanding of the bug reports. This 

project offers potential benefits for software developers and 

project managers by assisting in bug identification, 

prioritization, and emotional assessment in GitHub 

repositories. 

Indexed terms – GitHub Bugs, Word embedding Learning, 

Self-Adjusting Feature, Emotion Detection, Confusion 

matrix 

I. INTRODUCTION 

GitHub is a popular platform utilized by software 

developers and project managers for hosting and managing 

software projects. Bug reports play a crucial role in 

identifying and addressing issues within these projects. 

However, manually analysing and prioritizing bug reports can 

be time-consuming and subjective. Therefore, there is a need 

for automated approaches that can effectively predict bugs 

and provide additional contextual information for bug 

assessment. The project aims to develop a comprehensive 

system that predicts bugs in GitHub repositories while also 

detecting the emotional content associated with bug reports. 

By leveraging linguistic analysis, self-adjusting feature 

extraction techniques, and word embedding learning models, 

the project aims to improve bug prediction accuracy and 

provide insights into the affective aspects of bug reports. This 

project addresses this need by incorporating linguistic 

analysis techniques to extract relevant features from bug 

reports.  

These features consider the linguistic elements 

present in the text, such as the choice of words, sentence 

structure, and syntactic patterns. Linguistic analysis enables 

the system to capture important information that can indicate 

the presence of bugs. To enhance the bug prediction process, 

self-adjusting feature extraction techniques are employed. 

These techniques adaptively identify and prioritize the most 

informative linguistic elements for bug prediction. Not all 

linguistic features contribute equally to bug prediction 

accuracy, and self-adjusting algorithms dynamically adjust 

 

1  L. Sasikala 

sasikall@srmist.edu.in  

 

 

2 Anaiappan R 

anaiappan001@gmail.com 

3 Akshitha B 

ab6528@srmist.edu.in  

 

4 Selin Riona V 

rionaselin28@gmail.com 

1Assistant Professor, Department of Computer Science and Engineering, SRM Institute of Science and 

Technology, Ramapuram, Tamil Nadu, India 
2,3,4 Student, SRM Institute of Science and Technology, Ramapuram, Tamil Nadu, India 

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 89 Vol.9, Issue.7, July 2023



 

 

the importance of different features based on their relevance 

and contribution. This ensures that the system focuses on the 

most influential linguistic features, improving the accuracy of 

bug prediction. In addition to bug prediction, the project also 

incorporates emotion detection capabilities using word 

embedding learning models.  

Word embeddings capture the semantic meaning of words 

and enable the system to identify emotions expressed within 

the bug reports. By considering emotions, the system can 

provide insights into the affective aspects associated with 

reported bugs. This information can help project managers 

and developers understand the users' sentiments and 

experiences, assess the impact of bugs on user satisfaction, 

and prioritize bug fixes accordingly. Overall, the project aims 

to provide a comprehensive solution for bug prediction in 

GitHub repositories. By combining linguistic analysis, self-

adjusting feature extraction techniques, and emotion detection 

using word embeddings, the system can improve the accuracy 

of bug prediction and provide valuable insights into the 

affective aspects of bug reports. This can assist software 

developers and project managers in identifying and 

addressing bugs efficiently, improving software quality, and 

enhancing the overall user experience. 

 

II. RELATED WORKS 

"DeepBugTracker: A Hybrid Approach to Bug 

Prediction and Tracking on GitHub" by Gao et al. (2022): 

This study proposes a hybrid approach that combines code-

based features and non-code-based features, including natural 

language descriptions and social network information, for bug 

prediction and tracking on GitHub. The authors use word 

embeddings to represent natural language descriptions and 

social network information, and train a deep learning model 

for bug prediction and tracking.  

"SEER: A Transformer-Based Method for Predicting 

Software Bugs" by Nguyen et al. (2022): This study proposes 

a transformer-based method for predicting software bugs that 

leverages both code and natural language information. The 

authors use word embeddings to represent natural language 

descriptions, and fine-tune a pre-trained transformer model on 

both code and natural language data for bug prediction. 

"Using Multi-View Learning to Predict Bugs in GitHub 

Repositories" by Li et al. (2022): This study proposes a multi-

view learning approach that combines code-based and non-

code-based features for bug prediction in GitHub repositories. 

The authors use word embeddings to represent non-code-

based features, including natural language descriptions and 

social network information, and train a multi-view learning 

model for bug prediction.  

"An Empirical Study on Bug Prediction and 

Localization in Large-Scale GitHub Repositories" by Chen et 

al. (2022): This study evaluates the effectiveness of various 

bug prediction and localization methods on a large-scale 

dataset of GitHub repositories. The authors compare the 

performance of code-based, non-code-based, and hybrid 

approaches, including those that use word embeddings, for 

bug prediction and localization. 

"Emotion Detection and Classification in Bug 

Reports" by Panichella et al. (2014): This research explores 

the use of sentiment analysis techniques to detect emotions 

expressed within bug reports. It investigates the correlation 

between the emotional content of bug reports and the quality 

of bug-fixing activities. The study demonstrates the potential 

impact of emotions on the bug resolution process.  

"Linguistic Analysis of Bug Reports" by Bettenburg 

et al. (2008): This work investigates the linguistic 

characteristics of bug reports and their impact on bug 

resolution time. It examines various linguistic elements, such 

as sentence length, readability, and technical jargon, to 

identify factors that influence the efficiency of bug fixing. 

The study emphasizes the importance of linguistic analysis in 

understanding and improving the bug resolution process. 

"Improving Bug Localization with Linguistic 

Information" by Saha et al. (2013): This research explores the 

role of linguistic information in bug localization. It 

investigates the correlation between linguistic features in bug 

reports and the corresponding source code locations of bugs. 

The study demonstrates how linguistic analysis can enhance 

bug localization accuracy, assisting developers in efficiently 

identifying and fixing bugs.  

"Word Embeddings: A Survey" by Mikolov et al. 

(2013): This survey paper provides an overview of word 

embedding techniques and their applications. It explains how 

word embeddings capture the semantic meaning of words. 

They are relevant to the project as they form the basis for 

emotion detection and enhance bug prediction by considering 

the contextual information encoded in words. 

"Linguistic Analysis of Bug Reports" by Bettenburg et al. 

(2008): This work investigates the linguistic characteristics of 

bug reports and their impact on bug resolution time. It 
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examines various linguistic elements, such as sentence length, 

readability, and technical jargon, to identify factors that 

influence the efficiency of bug fixing. The study emphasizes 

the importance of linguistic analysis in understanding and 

improving the bug resolution process.  

"Mining Bug Databases for Unidentified Software 

Vulnerabilities" by Runeson and Alexandersson (2007): This 

study focuses on predicting software vulnerabilities by 

mining bug databases. It highlights the importance of 

analyzing bug reports to identify patterns and indicators of 

potential vulnerabilities. The work emphasizes the 

significance of bug report analysis for improving software 

security. 

 

III. EXISTING SYSTEM 

The existing bug prediction systems encountered 

several issues that impact their effectiveness and reliability. 

Following are some common issues associated with bug 

prediction systems. Bug reports often exhibit class 

imbalance, where the number of non-buggy reports 

outweighs the number of buggy reports. This imbalance can 

lead to biased models that are more accurate at predicting the 

majority class but struggle with accurately identifying bugs. 

Bug reports may contain irrelevant information, incomplete 

descriptions, or inconsistent formatting, making it 

challenging for bug prediction systems to extract meaningful 

features and identify bugs accurately. Software projects 

undergo continuous development and updates, resulting in 

changes to codebases and bug-reporting practices. Bug 

prediction systems need to adapt to these changes to maintain 

their accuracy and relevance. Understanding the context and 

domain-specific knowledge is crucial for accurate bug 

prediction. Lack of context understanding or limited access 

to domain-specific information can hinder the system's 

ability to identify bugs correctly. Selecting relevant features 

from bug reports is essential for effective bug prediction. 

Choosing the right set of features that capture the 

characteristics of bugs and their related information can be 

challenging and impact the system's performance. Bug 

prediction models can suffer from overfitting, where they 

become too specialized to the training data and fail to 

generalize well to new bug reports. Conversely, underfitting 

occurs when models fail to capture the underlying patterns 

and relationships in the data, resulting in poor bug prediction 

performance. Bug reports often vary in format, structure, and 

language, making it challenging to develop a standardized 

bug prediction system that can handle diverse data sources 

effectively. The availability of bug reports for training and 

evaluation purposes may be limited, especially for 

proprietary software or closed-source projects. Limited data 

can affect the system's ability to generalize and may result in 

suboptimal bug prediction performance. Addressing these 

issues requires careful consideration of data pre-processing 

techniques, feature selection methods, model selection, and 

evaluation strategies. Furthermore, continuous monitoring 

and adaptation to changing software environments are 

necessary to ensure bug prediction systems remain effective 

and accurate over time. 

 

IV. PROPOSED SYSTEM 

 

Fig 4.1. System Architecture Diagram 

The project aims to develop a system that combines 

linguistic analysis, self-adjusting feature extraction, bug 

prediction, and emotion detection techniques to improve the 

understanding and analysis of bug reports in GitHub 

repositories. 

A. Data Collection and pre-processing 

The project starts by collecting bug reports from GitHub 

repositories, focusing on relevant bug reports based on 

specified criteria. Steps majorly involve, Identification of the 

target GitHub repositories or projects from which you want 

to collect bug reports, and defining specific criteria for 

selecting bug reports, such as a certain time, labels, or 

keywords. Also, utilizing the GitHub API or web scraping 

techniques to retrieve bug reports from the selected 

repositories and storing the collected bug reports in a 

structured format, such as a dataset or a database. The 

collected bug reports undergo pre-processing, which 

involves cleaning the text, tokenizing it into individual 

words, and applying techniques like stop-word removal and 
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stemming to standardize the data. Clean the bug reports by 

removing irrelevant information or noise, such as HTML 

tags, code snippets, or special characters. Normalize the text 

by converting it to a consistent format, such as lowercase, to 

ensure uniformity. Tokenize the bug reports by splitting them 

into individual words or sub-word units. Stop words 

(common words like "the," "and," etc.) that do not carry 

significant meaning for analysis are removed. Handle data 

sparsity by considering techniques like rare wordPerform 

data augmentation techniques, such as synonym replacement, 

sentence paraphrasing, or back-translation, to increase the 

diversity and quantity of bug reports. This step can help 

mitigate data imbalance issues and enhance the robustness of 

the model and divides the pre-processed bug reports into 

training, validation, and testing sets. It ensures the proper 

distribution of bug reports across the sets to maintain 

representative samples.  

B. Linguistic Analysis 

Linguistic analysis is performed on the pre-processed 

bug reports to extract meaningful linguistic features. These 

features capture important elements related to bugs, such as 

word frequency, n-grams, syntactic patterns, or coding 

conventions. Additionally, the linguistic analysis aims to 

identify and capture emotions expressed in the bug reports. 

Some of its processes include the calculation of word 

frequency, extraction of n-grams, analysing syntactic 

structure, and detection of emotion. Firstly, it calculates the 

frequency of each word in the bug reports, identifying the 

most commonly occurring words, which can provide insights 

into the prevalent issues or topics. N-grams capture the 

contextual relationships between words and can reveal 

important phrases or language patterns. Later, analysing the 

syntactic structure of sentences in the bug reports, and 

identify syntactic patterns, such as noun phrases, verb 

phrases, or dependency relationships, that convey 

meaningful information about bugs and emotions. Lastly, 

performing sentiment analysis to determine the sentiment 

expressed in the bug reports and classify the text as positive, 

negative, or neutral, providing insights into the emotional 

tone of the bug reports. 

C. Self-Adjusting Feature Extraction 

The system then incorporates a self-adjusting feature 

extraction module. This module dynamically adjusts the 

importance or weights assigned to different linguistic 

features based on their relevance and contribution to bug 

prediction and emotion detection. By adaptively selecting 

and prioritizing the most informative linguistic elements, the 

system can improve the accuracy of bug predictions and 

emotion detection. Initially, assign equal importance to all 

linguistic features extracted from the bug reports. Linguistic 

features can include word frequency, n-grams, syntactic 

patterns, coding conventions, or any other relevant linguistic 

elements. Then, evaluation of the relevance linguistic feature 

to the bug prediction and emotion detection tasks. This 

evaluation can be done using various techniques, such as 

statistical analysis, information gain, or machine learning 

models.  

The adjustment of the weights or importance scores 

assigned to each linguistic feature based on their evaluation 

results is done. Features that are found to be more informative 

or influential in bug prediction and emotion detection are 

assigned higher weights, while less relevant features are 

assigned lower weights. Later, a subset of the most 

informative linguistic features based on their adjusted 

weights is selected. This adaptive feature selection helps 

prioritize the most important elements in the bug reports for 

accurate bug prediction and emotion detection. The self-

adjusting feature extraction process can be iterative, allowing 

for continuous refinement of feature importance and 

selection. After each iteration, re-evaluate the relevance and 

contribution of features and adjust their weights accordingly. 

D. Word Embedding Learning 

Word embedding learning is another crucial component 

of the project. The system leverages word embedding models 

like Word2Vec, GloVe, or BERT to learn semantic 

representations of words in the bug reports. These word 

embeddings capture the contextual relationships between 

words, allowing for a deeper understanding of the meaning 

and sentiment conveyed in the text. Word embedding 

learning models are machine learning models specifically 

designed to learn continuous vector representations of words 

from large text corpora. These models capture the semantic 

and syntactic relationships between words by mapping words 

to dense vector spaces, where similar words have similar 

vector representations. Word embeddings are useful because 

they enable machines to understand and process natural 

language more effectively. Here are some popular word 

embedding learning models: 

Word2Vec: Word2Vec is a popular word embedding 

learning approach that Mikolov et al. (2013) first introduced. 

Continuous Bag-of-Words (CBOW) and Skip-gram are the 

two training algorithms it provides. When predicting a target 
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word, CBOW considers its context, whereas Skip-gram 

predicts the words in the target word's immediate 

surroundings. Word2Vec models capture the distributional 

patterns of words and generate high-quality word 

embeddings. 

GloVe: GloVe leverages matrix factorization techniques 

to capture the semantic relationships between words. 

BERT: BERT uses a transformer-based architecture and 

pre-training objectives to learn contextualized word 

embeddings. It has revolutionized several NLP tasks by 

achieving state-of-the-art results on tasks such as question 

answering, sentiment analysis, and named entity recognition. 

These word embedding learning models have 

significantly advanced natural language processing tasks by 

providing effective representations of words that capture 

their semantic and syntactic relationships. They have been 

instrumental in improving the performance of various NLP 

applications, including text classification, information 

retrieval, sentiment analysis, machine translation, and more. 

E. Bug Prediction 

The bug prediction module is a component of the overall 

system that focuses on predicting the occurrence or 

likelihood of bugs in software projects. It utilizes various 

techniques and models to analyse software artifacts, such as 

bug reports, source code, and version control data, to make 

predictions about the presence of bugs. Bug prediction and 

emotion detection are performed using machine learning 

algorithms. The system utilizes the linguistic features, 

adjusted importance scores, and word embeddings as input to 

these models. The module analyses bug reports, code 

changes, or other relevant software artifacts and provides 

predictions or scores indicating the probability of bugs. Bug 

prediction focuses on predicting the presence or likelihood of 

bugs in bug reports, while emotion detection aims to detect 

and categorize emotions expressed in the text, such as joy, 

anger, sadness, etc.  

F. Evaluation and Tuning 

The system outputs the bug prediction results and 

emotion detection findings in a user-friendly format. This 

may involve generating reports, visualizations, or integrating 

with bug tracking systems to facilitate interpretation and 

actionability for developers and project managers.  

a. Confusion Matrix: A specific table known as the 

confusion matrix is used to evaluate the effectiveness of 

machine learning algorithms. An illustration of a general 

confusion matrix is shown in Table V. The examples in 

each actual class are represented by the rows of the 

matrix, while the instances in each anticipated class are 

represented by the columns, or vice versa. The confusion 

matrix offers a report of the total number of True 

Positives (TP), False Positives (FP), True Negatives 

(TN), and False Negatives (FN) as well as the outcomes 

of the testing procedure. 

b. Accuracy : The accuracy (ACC) is the percentage of 

accurate results (TP and TN) out of all the cases that were 

looked at. The most accurate value is 1, while the least 

accurate value is 0. ACC can be calculated using the 

formula below:  

ACC is equal to (TP + TN)/(TP + TN+ FP + FN). 

c. Precision: The number of accurate positive predictions 

divided by the total number of positive predictions is how 

precision is calculated. The calculation for the difference 

between the best and worst precisions is as follows: 

Precision is equal to TP/(TP + FP). 

d. Recall : The number of correct guesses divided by the 

total number of correct predictions is how recall is 

calculated. Best recall is 1, while lowest recall is 0. Recall 

is often determined using the following formula: 

Recall is TP / (TP + FN). 

e. F1 – Score: The weighted harmonic mean of recall and 

precision is known as the F-measure. Typically, it is used 

to compare various ML algorithms by combining the 

Recall and Precision metrics into a single measure. The 

following is the formula for the F-measure:  

F-measure = (2* Recall * Precision)/(Recall + 

Precision). 

G.   Deployment 

Overall, the project aims to enhance the analysis of 

bug reports in GitHub repositories by combining linguistic 

analysis, self-adjusting feature extraction, bug prediction, 

and emotion detection techniques. It strives to improve bug 

prediction accuracy and provide insights into the emotions 

expressed in the bug reports, aiding in the efficient resolution 

of software bugs. 

 

V. RESULT AND DISCUSSION 
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Fig 5.1. Evaluated and Tuned Result Matrix 

The system has various several potential benefits in 

software development and bug management. Here are some 

key applications. The system can be used to predict the 

presence or likelihood of bugs in software projects. By 

analysing linguistic elements and extracting relevant features 

from bug reports, the model can identify patterns and 

indicators of bugs, helping developers and project managers 

proactively address and resolve potential issues. Bug reports 

often flood software repositories, making it challenging for 

developers to prioritize and assign resources efficiently. By 

automatically analysing and categorizing bug reports based 

on their linguistic features and predicted bug severity, the 

system can aid in bug triage, ensuring that critical or high-

impact bugs receive prompt attention. The system can 

contribute to software quality assurance efforts by detecting 

and flagging potential bugs early in the development process. 

By providing bug prediction capabilities, it assists in 

identifying problematic areas of the codebase or potential 

software vulnerabilities, allowing developers to take 

proactive measures to improve the overall quality and 

stability of the software. Emotion detection in bug reports can 

provide valuable insights into the emotional experiences and 

sentiments expressed by users or developers. This 

information can help project managers understand the impact 

of bugs on stakeholders, identify frustration points, and take 

appropriate actions to improve user satisfaction and 

engagement.  

By automatically extracting linguistic elements and 

analysing bug reports, the system can assist in software 

maintenance and debugging activities. It can identify 

common coding patterns, syntactic errors, or coding 

convention violations that contribute to bugs, making it easier 

for developers to locate and resolve issues efficiently. The 

project's framework allows for self-adjusting feature 

extraction, which enables the system to adapt and improve 

over time. By continuously evaluating the relevance and 

contribution of linguistic features and adjusting their weights, 

the system can evolve and optimize its bug prediction and 

emotion detection capabilities, leading to more accurate and 

reliable results. Overall, the applications of Linguistic 

Elements Self-Adjusting Feature Extraction GitHub Bugs 

Prediction with Emotion Detection Using Word Embedding 

Learning Model are diverse, providing valuable support in 

bug management, software quality assurance, user 

satisfaction, and continuous improvement in software 

development processes. 

 

VI. CONCLUSION 

In conclusion, the project aims to develop an 

advanced system for bug prediction in GitHub repositories 

while also detecting the emotional content expressed in bug 

reports. By combining linguistic analysis techniques, self-

adjusting feature extraction methods, and word embedding 

learning models, the project aims to enhance bug prediction 

accuracy and provide insights into the affective aspects 

associated with bug reports. The system leverages linguistic 

analysis to extract relevant features from bug reports, 

considering linguistic elements such as word choice, sentence 

structure, and syntactic patterns. This enables the system to 

capture essential information indicative of the presence of 

bugs. To improve bug prediction accuracy, self-adjusting 

feature extraction techniques are employed. These techniques 

adaptively identify and prioritize the most informative 

linguistic elements for bug prediction. By dynamically 

adjusting the importance of different features based on their 

relevance and contribution, the system focuses on the most 

influential linguistic features, thereby improving the accuracy 

of bug prediction.  

Additionally, the system incorporates emotion 

detection capabilities using word embedding learning models. 

By capturing the semantic meaning of words in bug reports, 

the system can identify and analyse the emotional content 

expressed within the text. This information provides insights 

into the affective aspects associated with reported bugs, 

helping project managers and developers understand user 

sentiments, assess user experiences, and prioritize bug fixes 

accordingly. The project's overall objective is to develop a 

comprehensive system that combines linguistic analysis, self-
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adjusting feature extraction techniques, and emotion detection 

using word embeddings. By achieving this goal, the system 

can assist software developers and project managers in 

efficiently identifying and resolving bugs, enhancing software 

quality, and improving the overall user experience. 

 

VII. FUTURE WORKS 

There are several potential avenues for future work and 

improvements for the project, some are possible works 

include: 

A. Enhanced emotion detection:  

Further research can focus on improving the 

accuracy and granularity of emotion detection in bug 

reports. This could involve exploring more advanced 

sentiment analysis techniques, emotion classification 

models, or even incorporating multimodal approaches 

that consider textual, visual, and auditory cues. 

B. Multi-task learning:  

Investigate the possibility of jointly training the bug 

prediction and emotion detection tasks using a multi-task 

learning framework. By sharing and leveraging 

information across these related tasks, the  

system could benefit from improved generalization and 

enhanced performance on both bug prediction and 

emotion detection. 

C. Explainability and interpretability:  

Explore methods to enhance the explainability and 

interpretability of the system's predictions. By providing 

insights into the linguistic elements or word embeddings 

that contribute most significantly to bug prediction and 

emotion detection, developers and project managers can 

better understand and trust the system's results. 

D. Real-time bug prediction and emotion detection:  

Develop mechanisms to enable real-time bug 

prediction and emotion detection as bug reports are 

submitted in GitHub repositories. This would involve 

efficient processing and analysis of incoming bug 

reports, allowing for immediate feedback and proactive 

bug resolution. 

E. Domain adaptation and transfer learning:  

Investigate techniques to adapt the bug prediction 

and emotion detection models to different software 

development domains or repositories. This could involve 

leveraging transfer learning approaches or fine-tuning 

the models on domain-specific data to improve 

performance in specific contexts. 

F. User feedback integration:  

Incorporate user feedback and validation 

mechanisms to continuously improve the system's bug 

prediction and emotion detection capabilities. User input 

can serve as a valuable source of ground truth data and 

help identify areas where the system may need 

refinement or adjustment. 

G. Integration with bug tracking systems:  

Explore ways to integrate the system directly into 

existing bug-tracking systems or software development 

workflows. This would enable seamless adoption and 

utilization of bug prediction and emotion detection 

capabilities within the software development ecosystem. 

These future works can further enhance the 

effectiveness, accuracy, and practicality of the system, 

making it a valuable tool for bug prediction and emotion 

detection in GitHub repositories and beyond. 
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