
International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717

Vol.10, Issue.4, April 2024

A Review on Ensuring Robust Security Posture: Best Practices
for Securing Serverless Architectures in Devops Pipelines

Veeresh Akki 1 , Vehana M Naik 2

, V. Bhavani Krishna 3

Mahesh Kini [Associate Professor]

Department of Computer Science and Engineering.

Visvesvaraya Technological University.

Alvas Institute of Engineering and Technology.

1 veereshveeru676@gmail.com

3 vbk1606@gmail.com

Moodabidri, Dakshina Kannada, Karnataka, India

Abstract—Ensuring Robust Security Posture explores the

convergence of DevOps and serverless architectures,

emphasizing crucial security practices. It highlights the

advantages of serverless, including enhanced agility and cost-

efficiency. The article advocates for the implementation of the

zero-trust security model, secure deployment practices, and

comprehensive incident response strategies. Addressing

challenges like inadequate access controls and cold start

attacks, it promotes best practices such as the principle of least

privilege and continuous monitoring. Real-world case studies of

financial services and e-commerce applications underscore the

efficacy of these security measures. This concise guide is

essential for practitioners navigating the dynamic landscape of

DevOps and serverless architectures, ensuring an integrated

approach to security in the ever-evolving realm of software

development and deployment.

Keywords— Serverless Security, Zero Trust Model, Access

Controls, Incident Response, Dependency Scanning, Throttling
and Rate Limiting, Secure Deployment Practices.

I. INTRODUCTION

A. DevOps in Modern IT

DevOps, a fusion of "Development" and "Operations," plays a
pivotal role in the contemporary IT landscape, serving as a bridge
between software development and operational processes. This
section explores the significance of DevOps in facilitating the rapid
and seamless development and deployment of high-quality
software. DevOps functions as a conduit, facilitating the integration
of development and operational aspects. It expedites the delivery of
software by streamlining communication and collaboration
between teams.

• DevOps Practices Overview: Continuous Integration /
Continuous Delivery / Deployment (CI/CD) Continuous
integration involves merging code updates into the existing
codebase, facilitating swift conflict resolution. This
practice enhances deployment performance. IaC utilizes
code scripts to manage infrastructure, ensuring consistent
and reproducible environment management. DevOps
embraces Agile methodologies, employing rapid feedback
loops and iterative development to adapt to evolving
requirements.

• Essential Tools in DevOps: DevOps leverages various tools
to enhance development and deployment processes. CI/CD
Platforms: Travis CI, Jenkins. Monitoring and Logging
Tools: ELK Stack, Prometheus. Containerization Tools:
Docker, Kubernetes.

B. Serverless Architecture

Serverless architecture, despite its name, does not eliminate the
need for servers. This section delves into the principles of serverless
architecture, highlighting key components and distinguishing
features.

• Definition and Misconceptions: Serverless architecture is
a software design approach where applications are built and
operated without directly managing the underlying
infrastructure. Contrary to common misconceptions,
servers are still integral; however, cloud providers handle
related tasks.[1] [2]

• Components of Serverless Architecture: The Serverless
applications are composed of individual functions, each
designed to perform specific tasks. Serverless Platforms
like Leading cloud providers, such as AWS and Microsoft
Azure, offer serverless platforms for hosting and executing
functions. Event Triggers like Serverless functions are
triggered by specific events, such as changes in data or
incoming messages.

• Contrasting Monolithic Architecture: This are subsection
explores the traditional monolithic architecture,
emphasizing its unified software design model. Key
Components Monolithic architecture encompasses
authorization, presentation, business logic, database layer,
and application integration. [2] [3]

• Benefits of Serverless Architecture over Monolithic:
Highlighting the advantages of serverless architecture in
comparison to monolithic counterparts.

• Agility and Development: Rapid Deployment: Serverless
enables quick and iterative development cycles, facilitating
faster feature releases. Developer Efficiency: Focus on
code and business logic, while the cloud provider manages
infrastructure maintenance.

• Cost-efficiency: Reduced Operating Costs is Elimination
of server patching, maintenance, upgrades. The Pay-per-
Use Model is Payment based on resource usage, avoiding
costs for idle resources.

• Improved Monitoring and Troubleshooting: The
Comprehensive Logs Serverless systems offer detailed
logs and metrics for each function. Enhanced Debugging
Simplified monitoring and debugging through efficient log
data.

• Drawbacks of Serverless Architecture: A Acknowledging
challenges, such as a vendor lock-in and cold start latency,
associated with serverless architecture.

II. LITERATURE REVIEW

Focuses on Service Function Chaining (SFC) and its potential to

135

mailto:veereshveeru676@gmail.com
mailto:vbk1606@gmail.com

enhance service chain provisioning (SFC leverages Network
Functions Virtualization (NFV) and Software-Defined Networking
(SDN). Security is a major concern for widespread SFC adoption due
to increased attack surface. Comprehensive analysis of SFC
architecture, design principles, and relationships with NFV and SDN.
Highlighting significant enhancements achieved by adopting SFC,
with deployment examples. Layer-specific threat taxonomy analysis
based on SFC layering model. Evaluation of existing defensive
solutions and proposed security recommendations. Aims to assist
network operators in deploying cost-effective security measures
based on specific requirements.[4] [5]

Addresses security considerations unique to serverless
architectures. Emphasizes the importance of protecting application
logic in serverless applications. Identification of common attack
vectors and risks associated with misconfigurations. Discussion on
the role of consumers in ensuring serverless application protection.
Strategies for protecting serverless applications against
vulnerabilities and attacks. Linux containers present a lightweight
solution to package applications into images and instantiate them in
isolated environments. Such images may include vulnerabilities that
can be exploited at runtime. A vulnerability scanning service can
detect these vulnerabilities by periodically scanning the containers
and their images for potential threats. When a threat is detected, an
event may be generated to quarantine or terminate the compromised
container(s) and optionally remedy the vulnerability by rebuilding a
secure image. We believe that such an event-driven process is a great
fit to be implemented in a serverless architecture. In this paper we
explore the design of an automated threat mitigation architecture
based on OpenWhisk and Kubernetes. [5] [6] [7]

A. Zero Trust Security Model

The Zero-Trust Security model assumes that no user or device is
inherently trustworthy. This approach requires all users and devices
to be authenticated and authorized before accessing resources,
regardless of their origin within the network. Implementing a zero-
trust approach in serverless environments strengthens security by
minimizing the attack surface.

B. Secure Deployment Practices

Security checks shouldn't be a one-time activity. Integrate security
checks into the CI/CD pipeline to identify vulnerabilities before
deployment. This can involve automated vulnerability scanning,
configuration validation, and security policy enforcement. By
automating these checks, you can ensure consistent security practices
across all deployments[8].

C. Incident Response and Recovery

No security strategy is foolproof. Developing a comprehensive
incident response plan is crucial for responding effectively to security
incidents. This plan should outline procedures for finding, holding,
and recovering from security breaches. Regularly conducting drills
ensures team preparedness and minimizes potential damage during a
real-world incident.

D. Dependency Scanning

Third-party dependencies can introduce vulnerabilities into your
serverless applications. Regularly scan these dependencies for known
vulnerabilities and update them promptly to support a secure
codebase. Utilize automated dependency scanning tools within the
CI/CD pipeline to streamline this process.

E. Throttling and Rate Limiting

Implement mechanisms to prevent DoS attacks by limiting the
number of requests a user or service can make within a period. This
can be achieved through throttling and rate limiting techniques. These
measures safeguard serverless functions from being overwhelmed by
malicious activity. [9]

F. Serverless-Specific Security Tools

Many cloud providers offer serverless-specific security tools
designed to provide deeper visibility and control over serverless
environments. These tools can help you monitor function execution,
identify security risks, and manage access controls. Utilizing these
tools alongside general security best practices can further enhance
your serverless security posture. [10][11]

III. SECURITY CHALLENGES IN SERVERLESS

ARCHITECTURES

A. Inadequate Access Controls

Challenges: Sometimes, it is hard to control who can use
serverless things and what they can do best practices are

• Implement fine-grained access controls based on the
principle of least privilege.

• Regularly review and update access policies to align with
changing requirements.

• Utilize identity and access management (IAM) tools for
robust access control.

B. Data Security and Encryption

Challenges: We need to make sure that important data is kept
secret and safe when it is moving around the best practices are

• Implement strong encryption protocols for data in transit
and at rest.

• Regularly audit data access logs and employ anomaly
detection for suspicious activities.

• Utilize secure key management practices to safeguard
encryption keys. [12] [13]

C. Limited Visibility and Monitoring

Challenge: It can be hard to see what's happening with serverless
things and the best practices are

• Implement comprehensive monitoring solutions that
provide real-time insights into serverless functions.

• Utilize logging and analytics tools to identify and
troubleshoot issues promptly.

• Establish automated alerting systems for immediate
response to anomalous activities.

D. Cold Start Attacks

Challenge: Sometimes, when we start things up, they can be slow
and not safe and the best practices are

• Optimize code and configurations to minimize cold start
times.

• Implement warming strategies, such as scheduled
executions, to reduce latency.

• Regularly test and monitor cold start behaviours to address
potential security risks. [14]

E. Dependency Security Risks

Challenge: Sometimes, we use things that others made, and they
might not be safe and the best practices are

• Regularly scan and update third-party dependencies to
address known vulnerabilities.

• Implement a secure software supply chain with thorough
vetting of external components.

• Utilize automated dependency scanning tools within the
CI/CD pipeline. [15] [16]

F. Stateless Execution Challenges

Challenge: Serverless things don't remember what happened
before, and that can be a problem and the best practices are

• Implement secure external storage for persistent data
needs.

• Leverage state management solutions to handle necessary
information between function executions.

• Regularly review stateless design choices for security
implications.

136

G. Denial-of-Service (DoS) Attacks

Challenge: Some people might try to make serverless things stop
working by using them too much and the best practices are

• Implement throttling and rate-limiting mechanisms to
mitigate excessive requests.

• Utilize traffic shaping techniques to differentiate legitimate
from malicious traffic.

• Employ automated scaling and resource provisioning to
handle sudden spikes in demand. [17] [18]

H. Secure Deployment Practices

Challenge: Putting new things into serverless can be risky if we
don't do it right and the best practices are

• Integrate security checks into the CI/CD pipeline to
identify vulnerabilities before deployment.

• Implement automated testing for configuration validation
and adherence to security policies.

• Regularly update and patch serverless components to
address emerging security threats.

IV. BEST PRACTICES FOR SECURING SERVERLESS

ARCHITECTURES

A. Principle of Least Privilege (PoLP)

Best Practice: Only let people do what they need to do, and check
this regularly.

• Enforce the principle of least privilege (PoLP) to ensure
that users and functions have only the minimum
permissions necessary.

• Regularly audit and update access policies to align with
changing roles and responsibilities.

• Implement role-based access controls (RBAC) to assign
permissions based on job functions.

B. Secure Configuration Management

Best Practice: Keep vital information safe and change it
regularly.

• Utilize secure configuration management practices to
safeguard sensitive information.

• Regularly review and update configurations to address
evolving security requirements.

• Employ configuration validation tools to ensure adherence
to security policies.

C. Data Encryption

Best Practice: Make sure important data is safe when it is
moving and when it is stored.

• Implement robust encryption protocols for data in transit
and at rest.

• Utilize secure key management practices to protect
encryption keys from unauthorized access.

• Regularly audit and monitor data access logs to detect and
respond to potential security incidents.

D. Continuous Monitoring and Logging

Best Practice: Use good tools to keep an eye on what is
happening and fix things quickly.

• Implement comprehensive monitoring solutions to track
the behaviour of serverless functions.

• Utilize logging and analytics tools to collect and analyse
relevant security data.

• Establish automated alerting systems to promptly respond
to security incidents.

E. Access Controls and Authentication

Best Practice: Make sure only the right people can use things
and check this a lot.

• Implement strong access controls and authentication
mechanisms to verify user identities.

• Utilize multi-factor authentication (MFA) for an additional
layer of user verification.

• Regularly review and update access controls to align with
changing security requirements.

F. Automated Security Testing

Best Practice: Use tools that check for problems in the software

automatically.

• Integrate automated security testing tools into the CI/CD
pipeline to identify vulnerabilities.

• Conduct regular security assessments, including static and
dynamic code analysis.

• Implement automated testing for security policy adherence
and compliance. [19]

G. Zero Trust Security Model

Best Practice: Always check if people are allowed to use things,

even if they are inside the company.

• Embrace the zero-trust security model to verify the identity
and authorization of all users.

• Implement continuous authentication and authorization
mechanisms to monitor user activities.

• Regularly review and update access policies to align with
the zero-trust principles.

H. Secure Deployment Practices

Best Practice: Make sure new things are checked for safety before

we put them in.

• Integrate security checks into the CI/CD pipeline to
identify vulnerabilities before deployment.

• Implement automated testing for configuration validation
and adherence to security policies.

• Regularly update and patch serverless components to
address emerging security threats. [19] [20] [21]

I. Incident Response and Recovery

Best Practice: Have a plan for when things go wrong and practice
it a lot.

• Develop a comprehensive incident response plan outlining
procedures for security incidents.

• Conduct regular drills and simulations to ensure team
readiness and effectiveness.

• Establish communication protocols and escalation
procedures for timely incident resolution.

J. Dependency Scanning

Best Practice: Check if things we use are safe and update them a
lot.

• Regularly scan and update third-party dependencies to
address known vulnerabilities.

• Utilize automated dependency scanning tools within the
CI/CD pipeline for efficiency.

• Maintain an inventory of dependencies and track their
security status continuously. [22] [23]

K. Throttling and Rate Limiting

Best Practice: Make sure only the right number of people can use
things and stop dreadful things from happening.

• Implement throttling and rate-limiting mechanisms to
mitigate denial-of-service (DoS) attacks.

• Utilize traffic shaping techniques to differentiate between
legitimate and malicious traffic.

• Regularly review and adjust throttling parameters based on
evolving usage patterns.

L. Serverless-Specific Security Tools

137

Best Practice: Use tools made for serverless things that help us

see problems and fix them.

• Leverage serverless-specific security tools provided by
cloud providers for enhanced visibility.

• Utilize tools for monitoring function execution, identifying
security risks, and managing access controls.

• Stay informed about updates and advancements in
serverless security tools for continuous improvement.

V. STATISTICAL ANALYSIS

Fig. 1 Cost Incurred When an Increasing Number of Nodes Send 2000

Requests Every Hour.[31]

In fig. 1.,A cost analysis table compares the expense of running a
year-long leach attack using different cloud function providers. The
table shows how the cost scales based on the number of nodes
involved in the attack, ranging from 10 to 10,000. Among the
providers listed, AWS Lambda is the most economical, followed by
Google Cloud Functions, Azure Functions, and finally IBM Cloud
Functions. The cost increases significantly as the number of nodes
grows. Notably, the table doesn't display the cost for AWS Lambda
at higher node counts, but it's likely to be more than $5,000. [31]

TABLE I.

COLD START DURATION OF DIFFERENT PLATFORMS

Programming Language

Aws (Seconds)

Gcp (Seconds)

Azure
(Seconds)

JavaScript 0.2-0.4 0.4-0.6 -

Python 0.2-0.25 0.2-0.25 0.45

Go 0.3-0.4 0.35 -

C# - - 0.35-0.5

TABLE II.

DEVELOPERS IN CLOUD COMPUTING

Category Active
Developers (Q1

2021)

Change from Q1
2020

Cloud Native 6.8 million - (not specified in
the information
provided)

Containers 4.6 million +0.7 million

Container Orchestration
Tools & Management
Platforms

4.0 million +0.1 million

Cloud Functions or
Serverless Architecture

4.0 million +0.1 million

In Table 1. We can see that the cold start duration varies

depending on the programming language and cloud platform.
Generally, languages that are interpreted (like JavaScript and Python)
have faster cold start times than languages that are compiled (like
Java and C#). This is because interpreted languages don't need to be
compiled before they can be run.

The cloud platform can also affect cold start duration. For
example, Azure functions typically have longer cold start times than
AWS Lambda functions. This is likely due to differences in the way
that the two platforms provision resources.

In Table 2. Cloud Native - This section likely refers to the
total number of cloud native developers, which is 6.8 million.
Containers - This section showcases the number of active developers
using containers, which is around 4.6 million in Q1 2021. There's a
gradual increase from 3.9 million in Q1 2020. Container
Orchestration Tools & Management Platforms - This section shows
the number of active developers using container orchestration tools
and management platforms. There are 4 million developers in Q1
2021, which has grown from 3.9 million in Q1 2020. Cloud Functions
or Serverless Architecture - This section highlights the number of
active developers using cloud functions or serverless architecture.
There are 4.0 million developers in Q1 2021, which has grown from
3.9 million in Q1 2020.

VI. CONCLUSIONS

In conclusion, this review paper has explored the

multifaceted landscape of securing serverless architectures
within DevOps pipelines. Through a comprehensive analysis
of existing literature, key security challenges in serverless
environments have been identified, ranging from inadequate
access controls to cold start attacks. By synthesizing best
practices and strategies advocated by scholars and
practitioners, this paper has outlined a robust framework for
ensuring a resilient security posture in serverless deployments.
The significance of implementing a zero-trust security model,
secure deployment practices, and incident response strategies
has been emphasized to mitigate potential risks and
vulnerabilities. Additionally, the importance of continuous
monitoring, dependency scanning, and throttling mechanisms
in safeguarding serverless functions from malicious activities
has been underscored. Real-world case studies and statistical
analysis have provided empirical evidence of the effectiveness
of these security measures in various scenarios, further
validating their relevance and applicability. Looking ahead,
the implications of this review extend beyond academic
discourse to practical implementation in industry settings. As
organizations increasingly adopt serverless architectures to
drive innovation and agility, it becomes imperative to
prioritize security measures throughout the software
development lifecycle. By adhering to the principles and
recommendations outlined in this paper, stakeholders can
enhance their security posture and better protect their assets
and data from evolving threats in the dynamic landscape of
modern IT. In essence, this review serves as a comprehensive
guide for practitioners, offering actionable insights and best
practices for securing serverless architectures within DevOps
pipelines. By integrating these recommendations into their
development and deployment processes, organizations can
navigate the complexities of serverless security with
confidence, ensuring the integrity, availability, and
confidentiality of their applications and infrastructure.

ACKNOWLEDGMENT

I am grateful to Dr. G. Srinivasan for their unwavering

support and invaluable insights. His expertise and guidance
have been critical in refining the research design, analysing
data, and interpreting findings. His constructive feedback and

138

intellectual discussions have truly enriched this study.
I am deeply grateful to my mentor, Mr. Mahesh Kini, for their
exceptional guidance and unwavering support throughout this
research endeavour. Their expertise, insightful feedback, and
continuous encouragement have been invaluable in shaping
the direction and outcomes of this study. Their unwavering
commitment to my academic growth and professional
development has been truly inspiring.

I would like to express my heartfelt gratitude to the faculty
members and academic advisors who have provided guidance,
feedback, and support throughout my academic journey. Their
expertise, wisdom, and dedication to teaching and mentoring
have been instrumental in shaping my research skills and
scholarly pursuits.

REFERENCES

[1] Montida Pattaranantakul, Chalee Vorakulpipat, Takeshi

Takahashi, “Service Function Chaining security survey:
Addressing security challenges and threats”, Computer
Networks,Volume 221,2023,

https://www.sciencedirect.com/science/article/pii/S13891286220
05187

[2] W. O'Meara and R. G. Lennon, "Serverless Computing Security:
Protecting Application Logic," 2020 31st Irish Signals and
Systems Conference (ISSC), Letterkenny, Ireland, 2020, pp. 1-5.

[3] N. Bila, P. Dettori, A. Kanso, Y. Watanabe and A. Youssef,
"Leveraging the Serverless Architecture for Securing Linux
Containers," 2017 IEEE 37th International Conference on
Distributed Computing Systems Workshops (ICDCSW), Atlanta,
GA, USA, 2017, pp. 401-404.

[4] N. Mateus-Coelho and M. Cruz-Cunha, "Serverless Service
Architectures and Security Minimals," 2022 10th International
Symposium on Digital Forensics and Security (ISDFS), Istanbul,
Turkey, 2022, pp. 1-6.

[5] M. Golec, R. Ozturac, Z. Pooranian, S. S. Gill and R. Buyya,
"iFaaSBus: A Security- and Privacy-Based Lightweight
Framework for Serverless Computing Using IoT and Machine
Learning," in IEEE Transactions on Industrial Informatics, vol.
18, no. 5, pp. 3522-3529, May 2022.

[6] X. Li, X. Leng and Y. Chen, "Securing Serverless Computing:
Challenges, Solutions, and Opportunities," in IEEE Network, vol.
37, no. 2, pp. 166-173, March/April 2023.

[7] Ahmed Alnafessah, Alim Ul Gias, Runan Wang, Lulai Zhu,
Giuliano Casale, Antonio Filieri, “Quality-Aware DevOps
Research: Where Do We Stand?”, in IEEE Access ,Vol. 9, pp.
44476-44489, March 2021.

[8] Trend Micro. (Oct.24, 2019). Trend Micro Security News. “The
Cloud: What it is and what it’s for.” Accessed on May 25, 2020,
at https://www.trendmicro.com/vinfo/us/security/news/security-
technology/the-cloud-what-it-is-and-what-it-s-for.

[9] Amazon Web Services. (March 22, 2019). YouTube. “Build a
Serverless Startup in Just 30 Minutes!” Accessed on May 25,
2020, at https://www.youtube.com/watch?v=qBNYmYRlTpU.

[10] Mark Nunnikhoven. (Oct. 22, 2019). Trend Micro Simply
Security. “The Shared Responsibility Model.” Accessed on May
25, 2020, at https://blog.trendmicro.com/the-shared-
responsibility-model/.

[11] AWS. (n.d.). AWS. “The Shared Responsibility Model.”
Accessed on May 25, 2020, at
https://docs.aws.amazon.com/whitepapers/latest/security-
overview-aws-lambda/the-shared-responsibility-model.html.

[12] Security Best Practices in IAM. (n.d.). AWS. “Security Best
Practices in IAM.” Accessed on May 25, 2020, at
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-
practices.html#grant-least-privilege.

[13] Chris Munns. (July 23, 2018). AWS Compute Blog. “Powering
HIPAA-compliant workloads using AWS Serverless
technologies.” Accessed on June 8, 2020, at
https://aws.amazon.com/blogs/compute/powering-hipaa-
compliant-workloads-using-aws-serverlesstechnologies/.

[14] Ihor Lobastov. (March 8, 2019). DZone. “Comparing Serverless
Architecture Providers: AWS, Azure, Google, IBM, and Other
FaaS Vendors.” Accessed on June 3, 2020, at
https://dzone.com/articles/comparing-serverless-architecture-
providers-aws-az.

[15] David Ramel. (May 8, 2020). Virtualization and Cloud Review.
“Cloud-Native Development Survey Details Kubernetes,
Serverless Data.” Accessed on May 25, 2020, at
https://virtualizationreview.com/articles/2020/05/08/cloud-
native-dev-survey.aspx.

[16] AWS. (n.d.). AWS. “Amazon S3.” Accessed on May 25, 2020, at
https://aws.amazon.com/s3/.

[17] AWS. (n.d.). AWS. “Amazon Lambda.” Accessed on May 25,
2020, at https://aws.amazon.com/lambda/.

[18] Amazon API Gateway. (n.d.). AWS. “Amazon API Gateway.”
Accessed on May 25, 2020, at https://aws.amazon.com/api-
gateway/.

[19] AWS (n.d.). AWS. “IAM Roles.” Accessed on Aug. 11, 2020, at
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.ht
ml

[20] Derek Belt. (May 15, 2018). AWS Partner Network (APN) Blog.
“The 5 Pillars of the AWS Well-Architected Framework.”
Accessed on July 23, 2020, at
https://aws.amazon.com/blogs/apn/the-5-pillars-of-the-aws-well-
architected-
framework/#:~:text=The%20AWS%20Well%2DArchitected%2
0Framework%20provides%20architectural%20best%20practices
%20across,an%20existing%20or%20/

[21] Montida Pattaranantakul, Chalee Vorakulpipat, Takeshi
Takahashi,Service Function Chaining security survey:
Addressing
securitychallengesandthreats,ComputerNetworks,Volume221,20
23,109484,ISSN13891286,
https://doi.org/10.1016/j.comnet.2022.109484.

https://www.sciencedirect.com/science/article/pii/S13891286220
05187

[22] 2023 REPORT CLOUD SECURITY,
https://resources.trendmicro.com/rs/945-CXD-062/images/2023-
Cloud-Security-Report-TrendMicro-Final.pdf

[23] Global Cybersecurity Outlook 2023 INSIGHT REPORT
JANUARY 2023,
https://www3.weforum.org/docs/WEF_Global_Security_Outloo
k_Report_2023.pdf

[24] K. Djemame, M. Parker, D. Datsev, Open-source serverless
architectures: An evaluation of Apache OpenWhisk, in: 2020
IEEE/ACM 13th International

[25] Conference on Utility and Cloud Computing, UCC, 2020, pp.
329–335, http://dx.doi.org/10.1109/UCC48980.2020.00052.

[26] N. Kaviani, D. Kalinin, M. Maximilien, Towards serverless as
commodity: A case of knative, in: Proceedings of the 5th
International Workshop on Serverless

[27] Computing, WOSC ’19, Association for Computing Machinery,
New York, NY, USA, 2019, pp. 13–18,
http://dx.doi.org/10.1145/3366623.3368135.

[28] D. Balla, M. Maliosz, C. Simon, Open source FaaS performance
aspects, in: 2020 43rd International Conference on
Telecommunications and Signal Processing, TSP, 2020, pp. 358–
364, http://dx.doi.org/10.1109/TSP49548.2020.9163456.

[29] S.K. Mohanty, G. Premsankar, M. Di Francesco, An evaluation
of open source serverless computing frameworks, in: Proceedings
of the International Conference on Cloud Computing Technology
and Science, CloudCom, Vol. 2018-Decem, IEEE Computer
Society, 2018, pp. 115–120,
http://dx.doi.org/10.1109/CloudCom2018.2018.00033.

[30] P. Garcia Lopez, M. Sanchez-Artigas, G. Paris, D. Barcelona
Pons, A. Ruiz Ollobarren, D. Arroyo Pinto, Comparison of FaaS
orchestration systems, in: Proceedings - 11th IEEE/ACM
International Conference on Utility and Cloud Computing
Companion, UCC Companion 2018, 2019, pp. 109–114,
http://dx.doi.org/10.1109/UCC-Companion.2018.00049,
arXiv:1807.11248.

[31] Daniel Kelly, Frank G. Glavin, Enda Barrett, Denial of wallet—
Defining a looming threat to serverless computing, Journal of
Information Security and Applications,Volume
60,2021,102843,ISSN 2214-2126,
https://doi.org/10.1016/j.jisa.2021.102843.
(https://www.sciencedirect.com/science/article/pii/S2214212621
00079X)

139

https://www.sciencedirect.com/science/article/pii/S1389128622005187
https://www.sciencedirect.com/science/article/pii/S1389128622005187
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
https://www.trendmicro.com/vinfo/us/security/news/security-technology/the-cloud-what-it-is-and-what-it-s-for
https://www.trendmicro.com/vinfo/us/security/news/security-technology/the-cloud-what-it-is-and-what-it-s-for
https://www.youtube.com/watch?v=qBNYmYRlTpU
https://blog.trendmicro.com/the-shared-responsibility-model/
https://blog.trendmicro.com/the-shared-responsibility-model/
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/the-shared-responsibility-model.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/the-shared-responsibility-model.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://aws.amazon.com/blogs/compute/powering-hipaa-compliant-workloads-using-aws-serverlesstechnologies/
https://aws.amazon.com/blogs/compute/powering-hipaa-compliant-workloads-using-aws-serverlesstechnologies/
https://dzone.com/articles/comparing-serverless-architecture-providers-aws-az
https://dzone.com/articles/comparing-serverless-architecture-providers-aws-az
https://virtualizationreview.com/articles/2020/05/08/cloud-native-dev-survey.aspx
https://virtualizationreview.com/articles/2020/05/08/cloud-native-dev-survey.aspx
https://aws.amazon.com/s3/
https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://doi.org/10.1016/j.comnet.2022.109484
https://www.sciencedirect.com/science/article/pii/S1389128622005187
https://www.sciencedirect.com/science/article/pii/S1389128622005187
https://resources.trendmicro.com/rs/945-CXD-062/images/2023-Cloud-Security-Report-TrendMicro-Final.pdf
https://resources.trendmicro.com/rs/945-CXD-062/images/2023-Cloud-Security-Report-TrendMicro-Final.pdf
https://www3.weforum.org/docs/WEF_Global_Security_Outlook_Report_2023.pdf
https://www3.weforum.org/docs/WEF_Global_Security_Outlook_Report_2023.pdf
http://dx.doi.org/10.1109/UCC48980.2020.00052
http://dx.doi.org/10.1145/3366623.3368135
http://dx.doi.org/10.1109/TSP49548.2020.9163456
http://dx.doi.org/10.1109/CloudCom2018.2018.00033
http://dx.doi.org/10.1109/UCC-Companion.2018.00049
https://doi.org/10.1016/j.jisa.2021.102843
http://www.sciencedirect.com/science/article/pii/S2214212621

