
International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717

Vol.10, Issue.5, May 2024

Abstract--With the rapid urbanization and

increasing vehicular traffic, smart city initiatives

are becoming imperative for sustainable urban

development. Among the critical challenges faced

by urban planners is the management of traffic

congestion, which not only affects the efficiency

of transportation systems but also leads to

environmental degradation and economic losses.

Dynamic traffic tolling emerges as a promising

solution to alleviate congestion by dynamically

adjusting toll prices based on real-time traffic

conditions. However, effective implementation of

dynamic tolling requires accurate prediction

models to anticipate traffic patterns and optimize

tolling strategies.

This research project proposed a new method to

predict traffic flow in smart cities using

computational software. Computational software

techniques, including neural networks, fuzzy

logic, and genetic algorithms, provide the

flexibility to model nonlinear relationships in

traffic. The project aims to create powerful

predictive models that will predict traffic and

congestion levels with high accuracy

and efficiency by leveraging the power of

software calculations.

Keywords—Deepsort, Pychart, numpy

I. INTRODUCTION

This research involves collecting real-time traffic

data from various sources such as sensors, GPS

devices and traffic cameras to create comprehensive

data for model, training and practicality. Using the

data collected, fuzzy electronics will be used to

capture the time and location of traffic patterns,

while fuzzy logic can incorporate inaccurate and

uncertain information into forecasting methods.

Additionally, genetic algorithms will be used to

optimize models and improve predictions.

The proposed method for estimating traffic

congestion will be evaluated through simulations

and case studies in an urban area. Performance

metrics such as prediction accuracy, computational

efficiency, and activation capacity will be analyzed

to verify the effectiveness of the proposed method.

There is also the possibility that economic activity

will be affected by transportation's electric charging

strategy, travel behavior and the Environmental

sustainability will be analyzed to provide insight to

policy makers and urban planners.

Finally, this research focuses on improving

transportation systems in smart cities and supporting

more efficient and effective solutions. By

integrating software technology into traffic

forecasting, the project provides a useful tool to

improve urban traffic management and create a

better city than before.

Fast traffic cost estimation using OpenCV represents

a promising approach for smart city traffic

management. Integrating OpenCV computer

technology, this new solution allows real-time

analysis of traffic incidents captured by camera

images sent throughout the city. Cameras provide a

continuous stream of data that is processed using

image processing techniques to identify vehicles,

track their movements and determine vehicle speed.

Using machine learning models that learn traffic

history, the system can predict future traffic levels

and dynamically adjust tolls accordingly. This

approach not only improves traffic flow by

encouraging drivers to change routes or travel times,

but also optimizes fares to increase revenue for

transportation authorities. Additionally, dynamic

fare forecasting contributes to the long-term and

resilience of urban transport by promoting

sustainable transport and reducing carbon emissions.

As cities grapple with the complexities of

urbanization and transportation, traffic cost

estimation becomes an important tool to improve

efficiency, sustainability, and an overall good life

for people.

II. MODELS AND LIBRARIES USED

A. YOLOV8

A deep learning algorithm called YOLOv8

was developed for real-time computer

vision applications. With its innovative

design and advanced technology, YOLOv8

revolutionizes the way products are

searched by performing accurate and

DYNAMIC TRAFFIC TOLLING PREDICTION USING

SOFT COMPUTING

Dr. Chandra Naik1, Monisha M2, Nanda C B3, Priyanka R4, Rasi K S5
1,2,3,4,5 Department of computer Science, AIET, Mijar, Dakshina Kannada, India

drchandranaik@aiet.org.in1, monishamanjunath10@gmail.com2, bangernanda@gmail.com3,

priyacs099@gmail.com4, rasimulemane2002@gmail.com5

26

mailto:drchandranaik@aiet.org.in1
mailto:monishamanjunath10@gmail.com2
mailto:bangernanda@gmail.com3
mailto:priyacs099@gmail.com4
mailto:rasimulemane2002@gmail.com5

efficient product search in real time. Deep

learning models like YOLOv8 have

become important in many industries,

including robotics, driving, and video

surveillance. The ability to instantly

capture objects impacts security and

decision-making processes. The YOLOv8

architecture uses computer vision

technology and machine learning

algorithms to quickly and accurately

identify and locate objects in images and

videos. YOLO, short for We Only See

Each Other, began in 2015 with the

publication of a new research paper called

We Only See Each Other: An Exploration

of the World of Time. The authors of the

study are Joseph Redmon, Santosh

Divvala, Ross Girshick and Ali Farhadi.

YOLO represents a significant advance in

real-time object detection, providing an

integrated approach that is transforming the

field of computer vision. YOLO has grown

and changed a lot since its founding. Each

continues to improve upon the previous

one. The first version, YOLOv1,

introduced the concept of real-world object

detection by segmenting the input image

into a mesh and predicting bounding boxes

and category values. This method allows

you to capture multiple objects in an image

simultaneously. Building on the success of

YOLOv1, extensions such as YOLOv2 and

YOLOv3 continue to improve the

capabilities of the model. These iterations

provide ideas such as anchor fields,

pyramid objects, and more efficient

estimators to improve search results,

improving accuracy and speed. Currently,

the latest version of the YOLO series is

YOLOv8. This release represents the

biggest breakthrough in instant asset

discovery. YOLOv8 allows researchers

and developers to achieve high accuracy

and speed in object detection tasks. It has

become the first choice for robotics,

autonomous driving and video

surveillance.

Version Year Advancement

YOLOV1 2015 Introduction

to grid-based

discovery

method

YOLOV2 2016 Multi-scale

prediction,

feature

pyramid

networks, and

anchor boxes

are included.

YOLOV3 2018 increased

speed and

accuracy

following the

deployment

of Darknet-53

and numerous

detection

scales

YOLOV8 2021 A cutting-

edge deep

learning

model called

YOLOv8 was

created for

computer

vision

applications

requiring

real-time

object

recognition

B. DEEP SORT

DeepSORT (Deep Simple Online Real-

Time Tracking with Deep Relevance

Metrics) is a tracking algorithm primarily

aimed at computer vision and object

detection tasks, especially in the field of

multi-vehicle inspection (MOT). Although

DeepSORT itself is not used directly for

traffic prediction, it can be integrated into

general systems for traffic prediction and

management. Here's how DeepSORT is

used to predict traffic: Searching and

tracking objects: DeepSORT is good at

tracking multiple objects in a real-time

video stream. Within the scope of traffic

forecasting, it can be used to track vehicles

in traffic cameras or recorded images.

DeepSORT accurately tracks vehicles,

providing valuable information about

vehicle movement, alignment, speed and

interaction necessary to identify vehicle

patterns and take action. Data collection

and analysis: DeepSORT creates a

continuous stream of data about movement

and interaction. car character. This data can

be collected and analyzed to identify

incidents, hot spots, and traffic patterns.

By processing time tracking data, traffic

engineers and planners can gain insight into

traffic behavior, rush hours, accidents and

other important factors affecting traffic

forecasting. Integration with prediction

models: Although DeepSORT itself does

not make predictions, its output (traffic

data) can be fed into prediction models.

These models can use a variety of

techniques such as machine learning,

statistical analysis, or mathematics to

27

predict future traffic conditions. The traffic

monitoring provided by DeepSORT works

as a predictive model, allowing them to

make predictions about traffic volumes,

congestion levels, travel times, and other

inaccuracies. Real-time traffic

management: DeepSORT can provide

instant feedback about real-time traffic. By

integrating with traffic forecast models, it

can contribute to real-time traffic

management by providing up-to-date

information on vehicle movements and

congestion levels. Transportation

authorities can use this information to

correct traffic problems, reroute traffic, or

take other measures to reduce congestion

and improve traffic flow. In summary,

although DeepSORT itself is not a traffic

predictor, it plays an important role in

providing traffic predictions. Accurate and

reliable tracking data can be used through

traffic prediction models and systems. By

integrating DeepSORT into traffic

forecasting projects, cities and

transportation authorities can improve their

ability to effectively predict and manage

traffic, ultimately improving urban

mobility and reducing constraints.

C. OPEN CV

OpenCV (the open source computer vision

library) is a powerful tool that can be used

for many computer vision applications,

including traffic prediction in smart cities.

Applications of OpenCV for vehicle

prediction include: Vehicle Detection and

Tracking: OpenCV provides features and

methods for detection and tracking that are

important for emergency vehicle

maintenance. Methods such as Haar stage,

Histogram of Directed Gradients (HOG),

or deep learning methods such as

Convolutional Neural Networks (CNN)

can be used to detect vehicles in image or

video streams. Once discovered, OpenCV

can be used to monitor vehicle power over

time and provide valuable information for

vehicle prediction. Vehicle analysis: Using

OpenCV, you can extract and analyze

vehicle models by analyzing the

movement and behavior of detected and

tracked vehicles. OpenCV can help

determine parameters such as vehicle

speed, acceleration, velocity, lane

availability, and traffic levels. This

information is needed to understand current

traffic conditions and predict future traffic

conditions. Traditional detection: OpenCV

allows you to detect suspicious or unusual

situations such as traffic accidents, traffic

jams, and sudden changes in the road.

Using OpenCV, crashes can trigger alerts

or notify transportation authorities so they

can take quick action to reduce disruption

and improve traffic flow. Data collection

and prioritization: OpenCV helps you

collect, prioritize, and optimize the traffic

data needed to train predictive models.

Provides the ability to read and process

video, video, and real-time data from the

vehicle's CCTV camera. OpenCV can also

be used in data augmentation techniques to

increase the diversity and performance of

predictive modeling data. Integration with

machine learning platforms. Develop and

deploy predictive analytics through

seamless integration with machine learning

platforms such as OpenCV, TensorFlow,

and PyTorch. By combining OpenCV's

detection and tracking capabilities with

machine learning algorithms, you can train

a predictive model to predict future traffic

conditions based on historical data and

analysis time. Visualization and User

Interface: OpenCV provides data

visualization and traffic prediction tools to

help users better understand traffic

management. OpenCV's rendering

capabilities can be used to visualize real-

time traffic data, including traffic, traffic

maps, and forecasts, allowing drivers and

operators to effectively monitor and control

traffic. Overall, OpenCV can be used as a

multi-functional tool for smart city traffic

prediction, traffic data visualization,

monitoring, analysis and visualization,

which is very important for the

development. Improve city and

transportation information. Motion control.

Important advice.

D. FUZZY LOGIC

Fuzzy logic can be used for traffic

prediction in smart cities to improve

accuracy and efficiency. Here is how fuzzy

logic can be used in this case: Data Fusion:

Smart cities collect data from various

sources such as traffic cameras, road-

embedded sensors, GPS devices and

mobile applications. Fuzzy logic can be

used to combine these different data, often

in different formats and from different

sources, into a coherent model. Fuzzy logic

allows the integration of disparate data

and provides a framework for managing

uncertainty and ambiguity in data. Rule-

Based Traffic Forecasting: Fuzzy logic

allows the creation of rule-based methods

that capture the relationship between

variables affecting traffic, such as time of

day, weather, special conditions, roads and

history of car models. These rules can be

28

created based on expert knowledge or

inferred from data using machine learning.

Occupational Uncertainty: Traffic

forecasting involves uncertainty due to

factors such as traffic flow, unexpected

events, and data. Fuzzy logic is good for

dealing with uncertainty because it allows

the use of different expressions and fuzzy

sets to represent fuzzy or uncertain

information. By incorporating fuzzy logic

techniques, the traffic prediction process

can be evaluated based on uncertain or

incomplete information. Adaptive Control:

Fuzzy logic can be used to develop a traffic

control system that instantly adjusts the

signal and configuration algorithms based

on traffic predictions. These systems can

improve traffic efficiency by allocating

resources and shifting traffic to reduce

congestion and reduce travel time.

Feedback mechanism: Fuzzy logic can be

combined with feedback mechanisms to

monitor and update the traffic prediction

model based on the recommendation. By

comparing traffic prediction models to

actual traffic data, the system can adjust its

predictions over time and improve its

accuracy. Integration with other smart

cities: Fuzzy logic-based traffic prediction

can be integrated with other smart cities

such as public transportation, nature

services emergency and urban planning.

This integration allows decision-making

and coordinated response to transportation

issues, resulting in greater use and better

quality of life for city residents. Overall,

fuzzy logic provides a flexible and robust

power for traffic prediction in smart cities,

helping to increase flexibility, accuracy and

efficiency in management.

E. PYTROCH

PyTorch is a deep learning framework for

predicting traffic congestion in smart cities

to use the power of neural networks more

accurately and efficiently. Here's how

PyTorch is used: Deep learning models:

PyTorch, convolutional neural networks

(CNN), recurrent neural networks (RNN),

Long Short Term Memory Network

(LSTM) and Transformer. These models

can be trained on traffic history to

understand complex patterns and

relationships between variables affecting

traffic. Temporary data processing: Traffic

forecasting involves analysis of real-time

data such as traffic flow, congestion levels

and travel over time. PyTorch's integrated

modeling support makes it ideal for

efficient processing of physical data. For

example, RNNs and LSTMs are often used

in sequential data processing and can

capture the temporal patterns expected in

traffic patterns. Learning by Feature

Representation: PyTorch allows training

deep learning models to learn features

from raw objects. This feature is

particularly useful in traffic forecasts,

where the relationship between the input

(such as traffic volume, weather, time of

day) and the forecast (comparison, i.e.

future traffic) can be unpredictable and

difficult. Model customization and

experimentation: PyTorch's dynamic

computational graph and flexible

architecture allow researchers and

practitioners to customize models and

experiment with different network

architectures, power loss, and optimization

algorithms. This change allows the

development of models suitable for

specific needs and data sets in dynamic

traffic prediction studies. Parallel and

distributed computing: PyTorch supports

parallel and distributed computing,

allowing deep learning models to be

trained on large data sets. Scale the traffic

dataset. This capability is important to

solve the challenge of training complex

neural networks on big data, often

encountered in car prediction applications

in smart cities. Integration with other

Python libraries: PyTorch integrates with

other Python libraries commonly used in

data science and machine learning, such as

NumPy, pandas, scikit-learn and

Matplotlib. This integration supports data

preprocessing, infrastructure development,

evaluation, and operational visualization,

which are key components of the predictive

pipeline. Overall, PyTorch provides a

powerful and flexible tool for building

traffic prediction models in smart cities,

allowing researchers and practitioners to

use deep learning to improve the accuracy

and efficiency of traffic prediction.

F. NUMPY :

NumPy is a simple Python computational

package that can be used to predict traffic

in smart cities in a variety of ways: Data

representation and management: NumPy

provides powerful data such as arrays and

matrices suitable for representing traffic,

including speed. and volume. Such

information. This data model simplifies

operations such as data preprocessing,

extraction, and modeling, allowing more

data to be stored and managed.

Mathematics: NumPy provides many

mathematical functions that can be used to

analyze and process traffic data and create

29

predictive models. Functions such as mean,

median, standard deviation, and percentage

are used to record traffic characteristics and

identify patterns. Additionally, NumPy's

linear algebra functions support matrix

operations, eigenvalue decomposition, and

ratio value decomposition, which are

commonly used in estimation algorithms.

Statistical Analysis: NumPy provides

statistical functions to analyze the

distribution, correlation and patterns of

traffic data. Features such as histogram

calculation, probability density estimation,

and regression analysis can be used to

examine the relationship between different

features and identify predictive features.

Statistical analysis using NumPy can help

understand underlying patterns in traffic

data and guide the development of

predictive models. Time series analysis:

Traffic data is usually presented over a

period of time; This makes time analysis

crucial for predicting future traffic. NumPy

provides a full set of scheduling tools,

including sliding window operations, delay

operations, and automatic analysis. This

tool can extract physical patterns and

patterns from historical traffic data that can

be used to train predictive models.

Evaluation and Validation: NumPy

supports evaluation and validation by

providing functions to calculate

performance metrics such as squared error,

mean error, and R-squared score. These

metrics can measure the accuracy and

reliability of predictions and help

determine the most effective prediction

models for smart city traffic management.

Integration with machine learning libraries:

Seamlessly integrates with popular

machine learning libraries such as NumPy,

scikit-learn, and TensorFlow to ensure

compatibility with various prediction

algorithms. NumPy arrays can be used as

input data for machine learning models; It

supports the development of prediction

models using techniques such as

regression, classification, time estimation

and grouping. In summary, NumPy plays

an important role in predictive modeling by

providing simple data representation,

operations, arithmetic, statistical analysis,

time analysis, models and integration with

machine learning libraries. for smart cities.

By leveraging the power of NumPy,

transportation engineers and data scientists

can create accurate and cost-effective

predictive models to improve traffic

management and improve mobility in the

city.

III. DATASETS AND RESULT

Utilizing OpenCV's computer vision

capabilities, our dynamic traffic tolling

prediction system effectively analyses real-

time traffic patterns. Through continuous

monitoring of traffic cameras, the system

processes live video feeds to extract

relevant data for predicting congestion

levels. For predicting the traffic, we use

videos figure 3.1 shows one of the frame

from dataset video.

Figure 3.1 image taken from input video

The yolo algorithm is used to recognising

the objects in the video. First the video is

converted into number of frames. There are

totally 5396 frames are generated from the

video. Figure 3.2 will shows the one of the

frame from the video.

Figure 3.2 frame generated from the video

We will provide one user interface so that

user can get information about the traffic

then they will decide in which route they

can take. The Figure 4.3 will show that the

30

toll rate for different toll rates for different

type of vehicles. Toll rate will vary

according to the number of vehicles.

Figure 3.3 user interface image

IV. CONCLUSION

In summary, dynamic traffic toll estimation

using software calculation methods

provides a good approach for controlling

traffic congestion and optimizing toll

strategy in urban environment. Through the

integration of machine learning, fuzzy

logic, neural networks, and other software

computing technologies, accurate

predictions of traffic patterns and demand

can be made; This allows authorities to

adjust call rates to achieve desired results,

such as reducing congestion and improving

air quality. and increase revenue. . One of

the main benefits of using software in

traffic forecasting is the ability to handle

existing relationships, uncertainties and

non-linearities in the traffic system. Using

historical traffic data, real-time monitoring

data, and other factors such as weather and

conditions, the calculation model can be

modified and learn from change; this leads

to robust and reliable predictions. In

addition, the use of electronic transmission

systems in accordance with the standards

used in the sector will benefit passengers

and transportation convenience.

Passengers can experience fewer trips and

more travel time, while transportation

organizations can optimize infrastructure

use, reduce environmental impact and

generate revenue. However, there are some

challenges and considerations that need to

be addressed when implementing dynamic

phone number prediction. These include

the need for accurate and complete data

collection, improved design standards,

consideration of equity and fairness issues

in pricing, and integration with

transportation and existing rights. In

summary, dynamic traffic using software

calculation methods for fare estimation has

great potential to transform urban

transportation into greater efficiency,

sustainability and resilience. Continued

research, innovation and collaboration

between academic, business and

government stakeholders are crucial to reap

the full benefits of this approach and solve

complex transportation problems in today's

cities.

REFERENCES

[1] V. Kovalev, A. Kalinovsky, and V.

Liauchuk, ‘‘Deep learning in big image
data: Histology image classification for

breast cancer diagnosis,’’ in Proc. Int.
Conf. BIG DATA Adv. Anal. (BSUIR),

Jun. 2016, pp. 44–53.

[2] E. Strubell, A. Ganesh, and A. McCallum,

‘‘Energy and policy considerations for
deep learning in NLP,’’ in Proc. 57th Annu.
Meeting Assoc. Comput. Linguistics, 2019,

pp. 3645–3650.

[3] H. Mao, S. Yao, T. Tang, B. Li, J. Yao, and

Y. Wang, ‘‘Towards realtime object
detection on embedded systems,’’ IEEE
Trans. Emerg. Topics Comput., vol. 6, no.

3, pp. 417–431, Jul. 2018, doi:

10.1109/TETC. 2016.2593643.

[4] J. A. Carballo, J. Bonilla, M. Berenguel, J.

Fernández-Reche, and G. García, ‘‘New
approach for solar tracking systems based

on computer vision, low cost hardware and

deep learning,’’ Renew. Energy, vol. 133,
pp. 1158–1166, Apr. 2019.

[5] B. Moons, D. Bankman, and M. Verhelst,

‘‘Embedded deep learning,’’ in
Algorithms, Architectures and Circuits for

Always-on Neural Network Processing.

Cham, Switzerland: Springer, 2019, doi:

10.1007/978-3-319- 99223-5.

[6] K. Rungsuptaweekoon, V. Visoottiviseth,

and R. Takano, ‘‘Evaluating the power
efficiency of deep learning inference on

embedded GPU systems,’’ in Proc. 2nd Int.
Conf. Inf. Technol. (INCIT), Nov. 2017,

pp. 1–5, doi:

10.1109/INCIT.2017.8257866.

[7] G. Plastiras, C. Kyrkou, and T.

Theocharides, ‘‘Efficient ConvNet-based

object detection for unmanned aerial

vehicles by selective tile processing,’’ in

31

Proc. 12th Int. Conf. Distrib. Smart

Cameras, Sep. 2018, pp. 1–6.

[8] O. Rukundo, ‘‘Effects of image size on
deep learning,’’ 2021, arXiv:2101.11508.

32

