
International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717

Vol.10, Issue.8, August 2024

Web scraping for Competitive Pricing Intelligence

Hardik Prabhu, James Joseph, K K Koushik, Karthikeyan J, Mrs. Deeksha M

Department of Computer Science and Engineering, Alva’s Institute of Engineering and Technology, Moodbidri

E-mail: hardikprabhu123@gmail.com, jamesjoseph20107@gmail.com, kkoushik163@gmail.com, jskarthik5@gmail.com,

deeksha_m@aiet.org.in

Abstract

There is a wealth of human-established facts and

data sources available on the internet. But because

it will consist of a huge variety of disorganized and

divergent data, it will be challenging to collect

physically and to use in mechanical activities.

Recently, a range of devices and procedures have

been developed to help B2C and B2B systems

gather data and organize it into information.

Several web scraping issues will be covered in this

essay, beginning with an introduction and brief

summary of the numerous tools and resources that

are available. Before concluding with an overview

of the web scraping process, we also talked about

the many types of web scraping tactics and their

advantages and disadvantages.

Keywords

Web Scrapping, Internet, Big Data, Business

Intelligence.

1. Introduction

Web scraping is the process of automatically

extracting web data rather than manually duplicating

it; it is also referred to as screen scraping, web data

extraction, web harvesting, etc. This method involves

taking useful information out of a website's HTML

and putting it into a central spreadsheet or local

database. For this, it makes use of the website's URL.

Web scrapers use specifically programmed scripts to

accomplish this. It can be put together conventionally

for a certain website or it

can be simply arranged so that it can be used on

any website. A Web scraper's primary objective is

to convert unstructured material while preserving it

in databases that are ordered. HTML parsers, DOM

parsing, and HTTP programming are a few

techniques used in Web scraping. Afterwards, the

created data is used for analysis or retrieval. It has

many benefits, like giving us error-free data,

saving time for really fast outcomes, and centrally

storing all of the data. Additionally, we get to pick

the format in which it is made available to us. This

facilitates access and eases the process of data

analysis. Website price comparison, weather data

monitoring, website change detection, web

mashup, web research, and web data integration

are just a few of the areas where web scraping is

being used. It should be mentioned that online

scraping may occur concurrently with the periods

of inactivity of certain websites.

2. Literature Survey

2.1 Web Scraping for Data Analytics: A

BeautifulSoup Implementation

This paper explores the design and implementation of

a web scraper that extracts data from the Amazon

website using Python's BeautifulSoup package. The

main objective was gathering essential product

information for analysis, including the name, price,

ratings, reviews, and links. The study also sought to

demonstrate the scraper's efficacy by incorporating

the collected data into an interface and using data

visualization strategies to enable in-depth analysis.
12

mailto:jamesjoseph20107@gmail.com
mailto:kkoushik163@gmail.com
mailto:jskarthik5@gmail.com

The implementation showed that five pages could

be scraped effectively in only 10 seconds,

highlighting the scraper's speedy data extraction

and visualization capabilities. But during the

execution stage, some shortcomings became

apparent. Because the scraper's effectiveness

depended on particular product names, it was not

as flexible for general searches. Additionally, the

scraper compromised on the range of information

acquired from each product by prioritizing

efficiency over complete data extraction due to

speed considerations. Notwithstanding these

limitations, the study creates opportunities for

further investigation by extending an invitation to

researchers and developers to adapt this

implementation to their particular data extraction

demands, analytical requirements, and various web

scraping projects. This implementation is an

invaluable resource, especially for researchers

pursuing small-scale data analytics projects and

novices in the web scraping space. It is useful not

only for demonstrating a productive procedure for

scraping and visualizing data, but also for

providing a basic framework for customization and

additional research in the broad field of online

scraping and data analysis.

2.2 Web Scraping: State-of-the-Art and Areas

of Application

Web scraping is a critical method for gathering

important information from many websites and

condensing it into formats that are simple to access,

such as databases, spreadsheets, or CSV files. But

carrying it out by hand is frequently difficult, time-

consuming, and resource-intensive. The goal of this

article is to review and investigate the field of web

scraping techniques, covering a range of automated

solutions created in earlier research. It explores the

many methods and instruments used in web

scraping while illuminating the wide range of

industries in which it finds use. Web scraping is a

sophisticated process that involves more than just

extracting data from websites; it also involves

navigating anti-scraping techniques, dealing with

different site structures, and processing and storing

the gathered data in an effective manner. This essay

aims to provide insights into solving these problems

with automated solutions by reexamining current

methods and classifications. It also explores the

various fields in which web scraping is useful,

including e-commerce, market research, sentiment

analysis, and more, demonstrating its applicability

and importance in the data-driven world of today.

2.3 Design and Implementation of Data

Acquisition System Based on Scrapy Technology

The development of a reliable data collection system

built around the Scrapy crawler framework is

described in this paper. The design of the system

prioritizes the capacity to collect data according to

user-specified needs and provides streamlined job

management for data collection. Utilizing the Model-

Template-View (MTV) architecture of Django, the

development process incorporates Scrapy as the

primary asynchronous Python crawler application

framework. Regular expressions along with XPath

are used to extract data from web pages and perform

efficient analysis. Apart from its fundamental

features, the system incorporates supplementary tools

to improve job delegation. The addition of the Tree

jQuery tree plug-in improves the system's organizing

capabilities by enabling

user-friendly tree-based job management.

Additionally, using Bootstrap makes the UI more

user-friendly by enabling effective task name and

keyword combination queries that improve the user

experience when navigating pages and retrieving

data. Utilizing these technologies together 13

highlights the system's dedication to provide a

feature-rich and user-centric environment for data

administration and collecting.

3. System analysis and design

The web scraping project's System Analysis and

Design employs a thorough methodology to

guarantee the smooth and productive operation of

every part. The "Product Retriever" is in charge of

getting product details out of the database and

creating a fundamental connection to the data that

already exists. After that, the "Product Fetcher"

takes over, searching websites and extracting

URLs for the things it wants to buy.

The "Scheduler," a vital part that coordinates the

entire operation, receives these URLs in a

methodical manner. The "Scheduler" coordinates

with the "Price Extraction" component and

schedules the extraction jobs while controlling the

information flow. The latter methodically retrieves

product prices from the captured URLs by using a

"Extraction Template". The scheduler makes sure

that jobs are completed on time, allowing the entire

system to run in a continuous cycle. In order to

accomplish the project's goals, the System Analysis

and Design process include defining each

component's capabilities, creating data flow and

dependencies, and making sure the components

integrate seamlessly. For a reliable and flexible

online scraping system, consideration should also

be paid to error management, scalability, and

adaptability to various websites and databases.

3a. Flow Diagram

Figure 1. Flow Diagram.

Here's a breakdown of the steps, incorporating

insights from the diagram:

Product Retriever:

The Product Retriever is the main component that

facilitates access to and retrieval of product-related

information kept in the project's database. This

essential part is essential to bridging the

information gap between the stored data and the

running operations of the web scraping framework.

The Product Retriever, a crucial link in the data

retrieval chain, guarantees that later components

have access to the most recent and pertinent

product details by effectively managing data

extraction from the database.

Page Fetcher:

The important job of getting content straight from

the intended web pages is handled by the Page

Fetcher component. It retrieves HTML text for

additional processing and serves as a gateway to

external sources. This part, which focuses on

efficient content retrieval, makes sure that the

information used in the latter phases of the web

scraping process is correct and current. Through

managing the complexities of obtaining content 14

from several sources, the Page Fetcher enhances

the project's capacity to adjust and retrieve

important information from a range of websites.

Price Extraction:

With a special emphasis on pricing information,

the Price Extraction component is made to extract

precise details from the collected page content.

This module finds and isolates pertinent data points

by navigating through the HTML structure using

extraction templates or specified criteria. The Price

Extraction component contributes to the project's

capacity to deliver accurate and significant

information by following established extraction

criteria, which guarantees the correct retrieval of

product pricing and related details.

Scheduler:

The Scheduler component runs in a loop or at

predetermined intervals to orchestrate the web

scraping activity. Its main duty is to oversee the

scheduling and performance of different system

tasks. This component maximizes the overall

effectiveness of data extraction, retrieval, and

storage by automating the scheduling process.

Database:

This part acts as the main archive for all the

information that is collected while scraping

websites. This contains details on the products,

their costs, and any other pertinent information.

Effective data management is made possible by the

Database component's organized data store and

retrieval mechanisms. It is essential to making sure

that the data gathered is arranged, easily accessed,

and prepared for analysis, which enhances the web

scraping project's overall efficacy.

3b. Component Diagram

Figure 2. Data Flow Diagram

Here's a breakdown of the steps, incorporating

insights from the diagram:

1. Front-End with React-Js:

The building of an incredibly responsive and user-

friendly interface is made possible using React-Js.

Because of its component-based architecture,

components can be added and removed, improving

consistency and maintenance ease. Interaction:

Using React-Js guarantees smooth interactions and

gives users an easy-to-use interface to interact with

the features of the application. Its virtual DOM

approach enhances rendering and makes for a more

comfortable user interface.

2. Flask Back-End:

Lightweight Communication: Flask provides a

strong foundation for backend programming and is

renowned for its minimalist style. Its usefulness is

unaffected by its simplicity, allowing for effective

front-end and database connectivity. Data

Management: The backend process is streamlined

by Flask's adaptability in managing data operations

and database connections. By supporting several

databases, it enhances data retrieval and

management.

3. Python Web Scraper with Playwright: 15

Extensive Data Extraction: Playwright and Python

work well together to provide a powerful scraping

combination. Playwright's scripting power is

enhanced by its ability to handle intricate

interactions and anti-scraping methods, allowing

for comprehensive and automated data extraction.

Efficiency and Customization: Customized

scraping scripts that meet specific data

requirements may be created thanks to the Python-

Playwright connection, which maximizes speed. Its

asynchronous design makes it more effective at

managing several scraping jobs at once.

4. Bright Data's Integration:

Resilience Against Anti-Scraping Measures: The

system's resistance to anti-scraping techniques used

by websites is strengthened by Bright Data's

integration of scraping browsers. Its strong

infrastructure makes it possible to get around

problems and guarantee continuous data collection

without sacrificing accuracy or legality.

5. SQLite:

Effective Database Operations: The lightweight

database engine SQLite provides effective data

saving and retrieval. Its self-contained design and

ease of use make it perfect for smaller-scale

applications, offering dependable database

operations.

6. Automation and Scheduling Regular Updates:

Automating periodic scraping with no human

involvement is achieved by using a Windows

Batch File. By enabling timely changes, this

scheduling function preserves the correctness and

relevance of the extracted data.

7. Mechanisms for Handling Errors:

Improved Dependability Ensuring system

reliability requires robust error handling

techniques. They enable the detection, recording,

and correction of faults, guaranteeing that the

system keeps running smoothly even in the face of

sporadic glitches or interruptions.

3C. Use Case Diagram

Figure 3. Class Diagram

Here's a breakdown of the steps involved:

Absolutely, here's an elaboration on each

component in the context of the use case diagram

1. Search Products:

This feature helps customers find and search for

particular products inside the system.

• Interaction: To start searches, users enter product
names, categories, or pertinent keywords.

- System functionality: Based on user queries,

matching products are retrieved using search

algorithms.

• Presents search results along with pertinent
product details.

2. View Price History:

This feature's goal is to give consumers access to and

a chance to go over past pricing information for

the products they're tracking.

• Interaction: To display a product's pricing history, 16

users choose it from their tracked list. The system's

functionality includes retrieving and displaying a

detailed record or visual representation of price

variations over time. gives users access to historical

pricing trends so they may make well-informed

decisions.

3. Include Item in Tracking List:

• Goal: Enables consumers to add particular

products to their tracking list for continuous

observation.

• Interaction: After searching or looking at pricing

history, users can choose to add products to their

tracking list.

• System functionality: • Adds the chosen products
for ongoing monitoring to the user's tracking list.

• Starts the tracking procedure for the recently
added goods.

4. Turn on or off tracking:

• Goal: Gives users the ability to manage each

product's tracking status.

• User interaction: Users can change the tracking
status of products in their list by toggling it.

• System functionality: Adapts the monitoring

parameters of the system to the preferences of the

user.

• Cease or restarts the ongoing monitoring of
particular products.

5. Take Items Off of the Tracking List:

• Goal: Gives users the option to take particular

products off of their tracking list.

• Interaction: Using the system's interface, users can

start the process of removing products from their

tracking list.

• System functionality: Updates the user's tracking

list by eliminating the products they have chosen,

so ending the tracking.

6. Permit Product Notifications:

• Goal: Provides users with the choice to turn on

alerts for modifications to tracked product

information.

• Interaction: Users choose to receive alerts for
particular products that they find interesting.

• System functionality: Sets up the system to

produce and deliver alerts or notifications in response

to modifications in the data or status of the

tracked product.

By offering features that let consumers manage

their tracked products, examine pertinent

information, and manage tracking, each use case

enhances the user experience.

4. Methodology

Our web scraping project's suggested system

methodology takes a thorough and all-

encompassing approach to addressing the

complexities and difficulties involved in extracting

data from internet sources. This methodology's

fundamental component is the combination of

state-of-the-art technologies and strategic

considerations meant to maximize data extraction

while navigating a number of obstacles that are

frequently encountered in web scraping endeavors.

This methodology relies heavily on Bright Data's

integration, which provides a powerful scraping

browser that can bypass IP rotation, CAPTCHAs,

and access limitations, hence reducing the impact

of anti-scraping efforts. The foundation for a more

seamless and continuous data extraction procedure

is this integration. A key topic this methodology

addresses is handling dynamic content, which is

made possible by Playwright's integration. The

system acquires a strong tool to efficiently extract 17

data from webpages that largely rely on JavaScript by

utilizing Playwright's capabilities. This capacity

outperforms traditional methods such as Beautiful

Soup, guaranteeing thorough data extraction from

dynamic online content and so expanding the range

of information retrieved. Moreover, the approach

places a strong emphasis on scalability and robust

automation by strategically combining React, Flask,

and Playwright. Scalability for large-scale and real-

time data extraction is ensured by the combination

of Playwright's sophisticated scraping functionalities

with React's frontend capabilities and Flask's

lightweight yet effective backend architecture. This

strong technology foundation ensures continued

effectiveness and performance by enabling the

system to easily manage growing loads and adjust to

changing web architectures. This methodology

promotes effective error handling methods during the

scraping process in addition to technological

prowess. The project prioritizes error management in

order to strengthen the system's dependability. By

taking great care, this methodical approach reduces

interruptions and irregularities, guaranteeing a

reliable and consistent data collection procedure.

Apart from the technological benefits, the suggested

approach suggests possible directions for corporate

growth. When properly utilized, the retrieved data

has the potential to offer enterprises strategic value. It

provides useful information that may influence

market strategies and decision-making procedures,

enhancing the project's total effect and usefulness

beyond its technical limits. This all-encompassing

system technique essentially combines cutting-edge

technological elements with strategic considerations,

laying the groundwork for a reliable, effective, and

scalable web scraping strategy. In addition to

guaranteeing thorough data extraction, it

puts the project in a position to possibly impact and

improve strategic decision-making processes

across a range of corporate disciplines.

5. Application

The suggested web scraping project's applications cut

across multiple businesses and disciplines, taking use

of its sophisticated approach to extract rich data and

deliver useful insights. A wide range of applications

with significant effects are made possible by the

strong technological foundation and

tactical approach.

1. E-Commerce and Retail:

The project's capacity to pull historical patterns and

real-time pricing information from online

marketplaces such as Amazon, eBay, and others is

extremely useful in the e-commerce space.

Businesses can use this information to make well-

informed decisions in a dynamic market by using it

to inform pricing strategies, competitor analysis,

and inventory management.

2. Market Research and Analysis:

Market research benefits greatly from the extensive

data extraction capabilities, particularly when it

comes to dynamically loaded web sites. A deeper

understanding of customer preferences is made

possible by compiling market trends, product

reviews, and consumer sentiment from a variety of

sources. This allows for well-informed product

creation and market strategy.

3. Finance and investing:

Observing market movements can be greatly aided

by real-time data extraction and price tracking from

financial websites, such as stock exchanges and

investing platforms. Financial analysts, traders, and

18

investors can use this information to make data-

driven investment decisions.

4. Medicines and Health Care:

Tracking pharmaceutical product availability, costs,

and regulatory updates from different healthcare

websites can be made easier with the help of web

scraping. Keeping abreast of the most recent

advancements in medicine, inventory management,

and pricing analysis can all benefit from this data.

5. Property & Real Estate:

Real estate professionals can gain information for

pricing strategies, market analysis, and spotting

new trends in particular areas by extracting

property listings, price trends, and market

conditions from real estate websites.

6. Competitive Analysis and Brand Observation:

Keeping an eye on rivals' pricing, new product

releases, and marketing tactics on various web

channels gives companies a competitive advantage.

This information helps in understanding market

positioning, fine-tuning pricing methods, and

improving marketing techniques.

7. Strategic Planning and Business Expansion:

When the retrieved data is properly analyzed, it can

provide insightful information on new market

identification, market entry tactics, and business

expansion. For strategic planning and well-

informed decision-making processes, these insights

are essential.

6. Results

The The expected results of applying the suggested

system methodology to our web scraping project

include a range of noteworthy breakthroughs and

successes in the areas of technology, operations,

and strategy.

1. Increased Data Extraction Efficiency:

Playwright's dynamic content management in

conjunction with Bright Data's scraping browser

should greatly increase data extraction efficiency.

By combining many websites, this combination

guarantees a more efficient and thorough retrieval

procedure while getting beyond obstacles like

dynamic content, anti-scraping policies, and

JavaScript dependencies.

2. Enhanced Error Handling and Reliability:

It is expected that the methodology's focus on

effective error handling techniques will improve

the system's reliability. The project seeks to

provide a more dependable and consistent data

collecting procedure by reducing interruptions and

irregularities during the scraping process.

3. Scalability for Real-time Data Retrieval:

It is projected that combining React, Flask, and

Playwright will give the system the capacity to

scale for large-scale, real-time data extraction. This

technology stack enables the system to function

reliably even under increased traffic, effectively

manage growing data loads, and adjust to changing

web topologies.

4. Streamlined Automation and Task Scheduling:

It is anticipated that the process will be more

efficient with the inclusion of automation for

scheduling scraping tasks through Windows Batch

File. The workflow is optimized by this automated

feature, which guarantees periodic and timely data

extraction without the need for human participation.

5. Strategic Business Value:

The project's ability to yield strategic insights from

the gathered data is extremely valuable, even if its

technical capabilities are limited. When used 19

wisely, these insights may facilitate market

research, strategic planning, and well-informed

decision-making, hence creating opportunities for

company expansion and competitiveness.

6. Flexibility and Prospects for the Future:

The approach of the project places a strong emphasis

on flexibility to various websites and data sources. Its

ability to adapt and alter with web structures makes it

a flexible tool for changing data extraction

requirements in a range of sectors and domains. To

summarize, the project's goals are to improve data

extraction effectiveness, consistency, expandability,

and strategic significance. These anticipated

advancements not only elevate the project's technical

capabilities but also position it as a valuable asset for

businesses seeking data-driven insights and informed

decision-making strategies.

7. Conclusion

Online scraping is a well-known term that has

gained more attention due to the need for "free"

data that is gathered from online pages or PDF

documents. The data is needed by many

professionals and researchers in order to process,

analyze, and extract important implications. On the

other hand, individuals working on business-to-

business use cases need access to data from

multiple sources in order to incorporate it into

creative applications that provide unique features

and additional benefits. We have examined the

many facets of Web Scrapper in this paper. After

examining the web scraping tools and software, we

looked at the system's workings, advantages, and

disadvantages before seeing its applications.

References

[1]. Osmar Castrillo-Fernández, “Web Scraping:
Applications and Tools”, European Public Sector

Information Platform Topic Report No. 2015 / 10,

December 2015.

[2]. Kanehisa M, Goto S, Sato Y, et al. KEGG for

integration and interpretation of large-scale

molecular data sets. Nucleic Acids Res

2012;40:D109–14.

[3]. http://adamsoft.sourceforge.net/.

[4]. https://nutch.apache.org/.

[5]. https://lucene.apache.org/solr/.

[6] Zhang Boheng, Liu Jian, Zhu Yuxiang.(2017).

Microblog User Behavior Analysis System Based

on Big Data and Machine Learning. Computer

Knowledge and Technology, 2017, 13 (6):212-213.

[7]. William Marble, “Web Scraping With R”,
stanford.edu, August 11, 2016.

20

