
Developing a Tailored DVWA for
SQL Injection Exploration

Reddyvari Venkateswara Reddy1 ,D. Ajay2, C. Viveka Vardhan Reddy3, Md. Asfahan4

1Associate Professor, Department of CSE (Cybersecurity), CMR College of Engineering & Technology, Hyderabad,
Telangana, India

2,3,4Department of CSE (Cybersecurity), CMR College of Engineering & Technology, Hyderabad, Telangana, India.
Corresponding author mail: venkatreddyvari@cmrcet.ac.in

Co-authors: vvrchennam@gmail.com, ajay.deekonda1@gmail.com, mohdasfahan786@gmail.com

Abstract - SQL injection remains a significant security
challenge in modern web development, posing data
integrity and confidentiality risks. This project introduces
a deliberately insecure web application built with MySQL,
Node.js, Express, and React to simulate and analyze SQL
injection vulnerabilities. Designed as an educational tool,
the application provides an interactive platform to explore
common attack vectors and their impact on database
security. The project includes diverse scenarios, ranging
from simple injections to advanced exploitation
techniques, offering a comprehensive understanding of
how such vulnerabilities arise. Additionally, the work
emphasizes practical mitigation strategies, such as robust
input validation and the use of parameterized queries, to
prevent SQL injection attacks. By enabling hands-on
experimentation in a controlled environment, this project
aims to advance cybersecurity education and foster the
adoption of secure coding practices in web development.

Keywords- SQL injection, cybersecurity, web application
vulnerabilities, Node.js, Express.js, MySQL, React.js,
secure coding, input validation, database security,
cybersecurity education

 INTRODUCTION

In an era where online platforms are central to business
operations, social interaction, and information
exchange, the security of web applications is more
important than ever. However, the inherent complexity
and scale of these systems often lead to vulnerabilities
that, when unaddressed, can be exploited by attackers
to devastating effect [1], [3]. Much like a well-
defended fortress, a web application’s integrity relies
on the strength and security of each individual
component, from its databases and server
configurations to its codebase and user input handling
[6]. Vulnerabilities, often introduced unintentionally
through coding oversights, poor configurations, or
outdated software, serve as potential gateways for
attackers seeking to compromise sensitive data and
disrupt application functionality. Among the most
widespread and damaging of these security risks is

SQL injection (SQLi), a technique that enables
attackers to interfere with the database layer of an
application through manipulated inputs [2].

SQL injection happens when attackers use input
fields to insert harmful SQL statements into the
application’s database query functions. Through SQLi,
attackers can bypass authentication, access sensitive
user information, alter or delete data, and even gain
control over the underlying database server [5]. This
form of attack not only exposes user credentials,
financial records, and communication histories, but it
can also result in extensive damage to the
organization’s financial standing, customer trust, and
legal liabilities [6]. Despite ongoing advancements in
web security, SQL injection remains a significant
threat due to its ease of exploitation and the potentially
catastrophic outcomes it can cause [10].

To shed light on the mechanisms of SQL injection
attacks and the critical importance of preventive
measures, we have developed a vulnerable web
application designed explicitly for studying SQL
injection [4]. This project, built with MySQL, Node.js,
Express, and React, offers a controlled environment
for users to interact with and observe firsthand SQL
injection (SQLi) vulnerabilities [7], [9]. By simulating
various insecure coding practices, the application
demonstrates how different SQL injection attacks
function, including techniques for bypassing login
screens, manipulating database entries, and retrieving
confidential information [8]. The project serves as an
educational platform where students, developers, and
security enthusiasts can explore the anatomy of SQL
injection attacks and gain a practical understanding of
the risks and mitigation strategies associated with this
vulnerability [4].

A key lesson from this project is the necessity of
implementing secure coding practices and proactive
security measures. Safeguarding applications from

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN: 2456-5717 VOLUME 11, ISSUE 6 - JUNE 2025

24

SQL injection and XSS attacks requires techniques
like parameterized queries, input validation, and
regular security audits [2], [7]. Through detailed
demonstrations and hands-on engagement, this
research emphasizes the practical steps developers and
organizations can take to minimize security risks
[3],[10]. Our project provides insights into common
vulnerabilities while promoting awareness of secure
development practices that are essential in today's
rapidly changing threat landscape [5].

In summary, this project combines theoretical and
practical knowledge to highlight the significance of
web application security. It serves as a valuable
resource for understanding SQL injection and similar
vulnerabilities, underscoring the importance of robust
security practices to protect both organizations and
users from cyber threats [6], [10]. By equipping
developers with knowledge of these attack vectors and
their remedies, this project contributes to a safer digital
environment where applications are resilient against
both conventional and emerging threats [8], [9].

LITERATURE REVIEW

A. Aditya N. Deshpande, Dikshant G. Borse, Atharv
C.Kulkarni,
“Survey on SQL Injection Attack Detection”,
ISSN:0039-2049,2024.
This paper analyzes SQL injection attacks on web

applications, focusing on the types of SQL injection
vulnerabilities and the potential damage they may
cause. It proposes prevention strategies, including
machine learning algorithms, regular expressions,
encryption, tokenization, and dynamic parsing, to
detect and prevent these attacks. Emphasizing the
importance of secure programming practices and
developer education, the paper also critiques existing
detection tools and advocates for novel approaches,
such as machine learning and compiler techniques, to
strengthen web application security.

B. Mahmoud Baklizi, Issa Atoum, Nibras Abdullah,
Ola A.Al-Wesabi, Ahmed Ali Otoom, Mohammad
Al-Sheikh Hasan, “A Technical Review of SQL
Injection Tools and Methods: A Case Study of SQL
Map”, IJISAE, ISSN:2147-6799,2022

This paper examines SQL injection attacks, which
allow unauthorized access to websites and databases,
potentially leading to data theft or destruction. It
evaluates current detection tools, particularly sqlmap,
for their effectiveness, and demonstrates various
attack types with examples. By implementing sqlmap
in a controlled environment, the study reveals its
capabilities for accessing databases and retrieving
sensitive information, highlighting its role in
enhancing web application security.

C. Tanzila Hasan Pinky, Kaniz Ferdous, Jarin Tasnim,
Kazi Shohaib Islam, “Understanding SQL Injection
Attacks: Best Practices for Web Application
Security”, IJISRT, ISSN:2456-2165, 2024

This paper investigates SQL injection, a security
flaw that lets attackers execute SQL commands in a
web application's database by exploiting poorly
validated user input. Identifying SQL injection
vulnerabilities requires locating areas within a web
application that are vulnerable to harmful input and
ensuring user inputs undergo appropriate validation.
This project aims to create an attack chain to test
websites for security weaknesses and possible entry
points that attackers could use to break into the system.
Unlike most tools, which only scan specific URLs, this
project expands detection to ensure that no SQL
injection vulnerabilities exist across all pages of a
website.

D. SM Sarwar Mahmud, Taofica Amrine, Muhammad
Anwarul Azim, “SQL Injection Attack
Vulnerabilities of Web Application and Detection”,
International Journal of Computer
Applications(0975-8887),2023

This paper highlights SQL injection as a critical
security risk in database-driven web applications,
where attackers can exploit vulnerabilities to steal,
alter, or destroy sensitive data. It aims to create a
dataset of SQL injection payloads to enhance
vulnerability prediction and provide practical tools for
penetration testers. The proposed method includes
new payloads and a Web Application Firewall (WAF),
which effectively reduces SQL injection attacks,
strengthening web application security.

SQL INJECTION ATTACKS

1. UNION-BASED SQL INJECTION:
In a union-based attack, the attacker uses the SQL

UNION operator to combine their own malicious
query with a legitimate one. This lets them access data
from other tables in the database [5], [9]. As a result,
they can combine their query results with the
application's output.

Fig1: Types of SQL Injection Attack

25

2. ERROR-BASED SQL INJECTION:
This type exploits error messages generated by the

database when invalid queries are run. Attackers can
create an error on purpose to discover the structure of
the database [1]. This includes finding out the names
of tables and columns, which they can later use to
access data.

3. BOOLEAN-BASED BLIND SQL INJECTION:
In Boolean-based attacks, attackers test the

database by sending queries that return a "true" or
"false" response without actually revealing data [2].
This is often done by altering the query logic to see if
certain conditions are met, allowing them to map out
database information based on the responses.

4. TIME-BASED BLIND SQL INJECTION:
In time-based attacks, the database response time

is used as a clue. Attackers add delays to queries (such
as SLEEP statements) and infer information based on
how long it takes for the database to respond [6]. This
technique reveals data indirectly by measuring
response times.

5. OUT-OF-BAND SQL INJECTION:
This attack uses channels outside of the standard

response to extract data, often through network or
DNS requests. Out-of-band injections are useful when
the database cannot respond directly or when the
attacker needs to avoid detection, as they do not rely
on immediate HTTP responses [3], [8].

6. STACKED QUERIES SQL INJECTION:
Stacked query attacks involve executing multiple

SQL statements in a single query. This allows attackers
to run additional commands (such as DROP or
INSERT) along with the intended query, potentially
modifying the database or altering data [7].

SQL INJECTION ATTACK TECHNIQUES

1. TAUTOLOGY-BASED INJECTION:
In this technique, attackers use statements that are

always true (like 1=1) to manipulate the query logic
[1]. For instance, in a login form, entering OR 1=1--
in the username field could bypass authentication
checks, granting access without proper credentials.

2. COMMENTING OUT:
Attackers can use SQL comments (-- or /* ... */) to

ignore parts of a legitimate query. For example,
appending admin'-- to a login query could bypass the
password check by effectively commenting it out,
allowing unauthorized access [4].

3. PIGGYBACKED QUERIES:
This technique involves injecting additional

queries (known as stacked queries) separated by a
semicolon [7]. For example, an attacker could use ';

DROP TABLE users;-- to drop a table from the
database if multiple statements are allowed.

4. BLIND INJECTION USING BOOLEAN STATEMENTS:
In this technique, attackers send a series of queries

with true or false conditions to observe the
application’s responses, such as altering a query to
WHERE id = 1 AND 1=1 or WHERE id = 1 AND 1=2.
This allows the attacker to deduce information based
on different responses [2].

5. BLIND INJECTION USING TIME DELAYS:
Time delays help attackers confirm the presence of

vulnerabilities by introducing commands like
SLEEP(5) in the query [6]. If the application takes
longer to respond, they know a vulnerable spot exists
and can proceed with further attacks.

6. UNION SELECT INJECTION:
With union select, attackers append the UNION

operator to combine their malicious query with a
legitimate one [5]. This method lets you gather data
from different tables by choosing the specific columns
you need. This way, you can combine two queries
effectively.

7. OUT-OF-BAND INJECTION:

This technique relies on extracting data through
external communication methods (like DNS or HTTP
requests) rather than directly through the application’s
response [3]. This is useful in scenarios where direct
interaction is limited or where attackers want to avoid
detection.

8. STRING CONCATENATION INJECTION:
Some databases allow string concatenation with

commands like +, ||, or CONCAT. Attackers use these
operators to bypass filters or modify queries by
altering or adding conditions to the query dynamically
[9].

PROBLEM STATEMENT

Create a deliberately vulnerable web application using
MySQL, Node.js, Express, and React to demonstrate
SQL injection attacks. This interactive platform will
help developers and security professionals understand

Fig2: User Interface

26

SQL injection risks and learn effective prevention
strategies through hands-on experience.

METHODOLOGY

The methodology for developing a full-stack website
that demonstrates SQL Injection vulnerabilities
includes planning, design, development, and testing
phases. The primary aim is to intentionally design a
web application using Node.js, Express.js, React.js,
and MySQL to simulate SQL injection techniques in
a controlled, educational environment [4]. This section
outlines the steps followed in each stage.

1. Requirements Analysis and Planning

• Objective Definition: The project’s goal is to
create a website that deliberately includes SQL
injection vulnerabilities. The objective is to
educate developers and security enthusiasts on
identifying and mitigating SQL injection attacks
[1].

• Technology Stack Selection: The full-stack
website was built using Node.js and Express.js for
the backend, React.js for the front end, and
MySQL for database management. We chose
these technologies because they are popular and
flexible for modern web development [7].

• Security Consideration and Ethical
Boundaries: Clear ethical guidelines were
established to ensure that the project is strictly for
educational purposes. All SQL injection
vulnerabilities are limited to the development
environment to prevent misuse [4], [8].

2. System Design and Architecture

• Frontend Design (React.js): The front end was
developed using React.js to provide a responsive,
interactive user interface. A main part of this
interface is a form where users can enter search
parameters to get data. The form submission
triggers requests to the backend, simulating
typical user interactions with an application [4].

• Backend Development (Node.js and
Express.js): The backend API is structured with
Node.js and Express.js to handle incoming
requests from the front end. API endpoints
retrieve data from a MySQL database based on
user input. This design makes them vulnerable to
SQL injection attacks. This was done to replicate
real-world insecure coding practices [6].

• Database Design (MySQL): The MySQL
database contains tables with sample user data to
be retrieved based on search criteria. A user's
table, for instance, includes basic fields like id,
username, email, and password. The database
structure is intentionally designed to allow SQL
injection attacks by not using parameterized
queries or prepared statements [7].

3. Vulnerability Implementation

• Building the Injection-Prone Query: In the
backend, we create SQL queries by combining
user inputs directly into the SQL statements [1].
For example:

let query = `SELECT * FROM users WHERE id
= ${userInput};`;

This lack of input sanitization allows attackers to
input SQL code directly into the query, such as 1
= 1 OR 1, which would cause the query to fetch
all rows from the user's table.

• Creating Input Fields with SQL Injection
Flaws: A web page has a search box for users to
find specific records. However, this search box
has a security flaw that allows SQL injection. If
someone enters harmful code, like `1=1 OR 1`, it
can lead to the database returning extra data that
was not intended. This page demonstrates how a
basic input field, when improperly secured, can be
manipulated to exploit SQL vulnerabilities [6].

4. Demonstrating SQL Injection Techniques

• Demonstrating Basic SQL Injection: Users are
instructed to input common SQL injection strings,

Fig3: Users Table

Fig5: Backend running on port 9000

27

such as 1=1 OR 1. When entered in the search
field, the backend processes the input without
sanitization, resulting in the entire dataset being
returned [9].

• The query transforms from:

SELECT * FROM users WHERE id = 1;

to:

SELECT * FROM users WHERE id = 1 OR 1=1;

This query retrieves all records in the table due to
the 1=1 condition, which is always true.

• Error-Based SQL Injection: Another form of
SQL injection demonstrated is error-based
injection. By inputting a value that could cause an
error (e.g., using an unclosed quotation mark),
users can observe database error messages,
gaining insight into the database structure [7].

• Union-Based SQL Injection: In a controlled
way, union-based SQL injection can be
demonstrated, where users add a UNION
SELECT query to retrieve additional information
from the database [5]. For example:

1 UNION SELECT username, password FROM
users;

This technique allows attackers to retrieve
sensitive information beyond the initial query’s
scope by merging it with a second query.

RESULT

We ran the website in a local environment:

1. We launched the project in Visual Studio Code.

2. The project’s user interface runs on the port

number 3000.

3. The backend is connected to a MySQL database
and operates on port number 9000.

4. The user can choose the security level and retrieve
user details by entering the user IDs in the input
field.

Fig6: getting the user details with their ID

5. If a user enters a malicious SQL query, such as 1
OR 1, the backend retrieves all the data.

Fig7: SQL injection successful

DISCUSSION

The development of this vulnerable full-stack website
highlights the critical importance of secure coding
practices in modern web applications. By intentionally
designing a site with SQL injection vulnerabilities, this

project serves as an educational tool, demonstrating
the risks associated with unfiltered user input and non-
parameterized queries [3], [7]. This project shows how

Fig4: User Interface on port 3000 on local environment

28

SQL injection attacks can threaten user data and
system security at different levels. It starts with a
system that is fully vulnerable, then moves to a
moderately secure setup, and finally to a secure setup
that uses parameterized queries [1], [6].

The low-security level, which allows unrestricted
user input directly embedded in SQL queries,
effectively demonstrates how easily attackers can
manipulate such vulnerabilities. Using basic SQL
injection strings shows how attackers can access
unauthorized data, bypass login processes, and
potentially view sensitive information [5]. As security
gets stronger at medium and high levels, the project
shows how sanitization and parameterized queries
help prevent attacks [9]. These findings emphasize the
importance of using secure query practices and
validating input to protect against SQL injection [10].

Furthermore, this project provides insight into the
educational benefits of a controlled, demonstrative
environment for SQL injection [8]. Users can see how
insecure code affects their systems in real-time. This
helps them understand why it’s important to design
with security in mind [4]. Such demonstrations can be
highly effective in educating developers on the
practical steps required to secure their applications.
Future work could extend this project by incorporating
additional security vulnerabilities (such as cross-site
scripting or CSRF) to create a comprehensive learning
platform for web security [3], [6]. In conclusion, the
project not only emphasizes the risks posed by SQL
injection but also demonstrates clear and practical
countermeasures, making it a valuable educational
resource in the field of cybersecurity [9].

CONCLUSION

This project demonstrates the vulnerabilities of SQL
injection within a controlled web application
environment, shedding light on the serious security
risks posed by insufficient input validation and non-
parameterized SQL queries [7]. Through the
implementation of various security levels, it becomes
clear that secure coding practices—such as using
parameterized queries and rigorous input
sanitization—are essential to prevent data breaches
and unauthorized access [1], [6]. This project not only
emphasizes the need for a security-centric approach to
web development but also serves as an educational
tool, providing practical insights into identifying and
mitigating SQL injection vulnerabilities [4], [8]. In
doing so, it contributes to a greater understanding of
web application security and the importance of
proactive defense measures [10].

FUTURE SCOPE

This project has the potential to evolve into a
comprehensive learning platform by incorporating a
fully developed website with a range of security levels
for SQL injection. Future iterations could include
interactive options to toggle between security settings,
allowing users to experience and understand different
SQL injection mitigation techniques firsthand [6], [8].
By providing a scalable range from low to high
security, with each level implementing progressively
more advanced defenses—such as parameterized
queries, prepared statements, and custom input
validation—this platform would serve as a valuable
tool for upcoming cybersecurity professionals [9].
Such a project could foster hands-on learning,
enabling users to observe how various SQL injection
attacks are neutralized as security improves, ultimately
bridging the gap between theoretical knowledge and
practical cybersecurity skills [5].

REFERENCES

[1]. MeiJunjin, An approach for SQL injection
vulnerability detection, IEEE Sixth International
Conference on Information Technology: New
Generations, pages: 1411 -1414,2009.
https://ieeexplore.ieee.org/abstract/document/50
70824

[2]. Lijiu Zhang, Qing Gu, Shushen Peng, Xiang
Chen, Haigang Zhao, Daoxu Chen, “D-WAV: A
Web Application Vulnerabilities Detection Tool
Using Characteristics of Web Forms”, IEEE
Fifth International Conference on Software
Engineering Advances, pages: 501-507, 2010 .
https://ieeexplore.ieee.org/abstract/document/56
15484

[3]. Stephen Thomas, Laurie Williams, Tao Xie, On
automated prepared statement generation to
remove SQL injection vulnerabilities, Journal of
Information and Software Technology, Elsevier
Ltd, 2009, pages: 589-598.
https://www.sciencedirect.com/science/article/a
bs/pii/S0950584908001110

[4]. Inyong Lee, Soonki Jeong, Sangsoo Yeo,
Jongsub Moon, A novel method for SQL
injection attack detection based on removing
SQL query attribute values, Journal of
Mathematical and Computer Modeling, Elsevier
Ltd, 2011, pages:1-11.
https://www.sciencedirect.com/science/article/pi
i/S0895717711000689

[5]. João Antunes, Nuno Neves, Miguel Correia,
Paulo Verissimo, and Rui Neves, Vulnerability
Discovery with Attack Injection, IEEE
Transactions on Software Engineering, 2010,
Vol. 36, pages: 357-370.

29

https://ieeexplore.ieee.org/abstract/document/5070824
https://ieeexplore.ieee.org/abstract/document/5070824
https://ieeexplore.ieee.org/abstract/document/5615484
https://ieeexplore.ieee.org/abstract/document/5615484
https://www.sciencedirect.com/science/article/abs/pii/S0950584908001110
https://www.sciencedirect.com/science/article/abs/pii/S0950584908001110
https://www.sciencedirect.com/science/article/pii/S0895717711000689
https://www.sciencedirect.com/science/article/pii/S0895717711000689

https://ieeexplore.ieee.org/abstract/document/53
74427

[6]. Abdul Bashah Mat Ali, Ala, Yaseen Ibrahim
Shakhatrehb, Mohd Syazwan Abdullahc, Jasem
Alostadd, SQL-injection vulnerability scanning
tool for automatic creation of SQL-injection
attacks, Journal of Procedia Computer Science,
Elsevier Ltd, 2010, pages: 453-458.
https://www.sciencedirect.com/science/article/pi
i/S1877050910004515

[7]. W.G.J. Halfond, A. Orso, P. Manolios, WASP:
protecting web applications using positive
tainting and syntax-aware evaluation, IEEE
Transactions on Software Engineering, 2008,
vol. 34 (1), pages: 65-81.
https://ieeexplore.ieee.org/abstract/document/43
59474

[8]. Z. Su, G. Wassermann, The essence of command
injection attacks in web applications, 33rd ACM
SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Charleston, SC,
USA, 2006, pages: 372-382.
https://dl.acm.org/doi/abs/10.1145/1111320.111
1070

[9]. J. Park, B. Noh, SQL injection attack detection:
profiling of web application parameter using the
sequence pairwise alignment, Journal of
Information Security Applications, LNCS, 2007,
vol. 4298, pages: 74-82.
https://link.springer.com/chapter/10.1007/978-
3-540-71093-6_6

[10]. Ivano Alessandro Elia, José Fonseca, Marco
Vieira, Comparing SQL Injection Detection
Tools Using Attack Injection: An Experimental
Study, 21st IEEE International Symposium on
Software Reliability Engineering, 2010,
pages:289-298.
https://ieeexplore.ieee.org/abstract/document/56
35053

30

https://ieeexplore.ieee.org/abstract/document/5374427
https://ieeexplore.ieee.org/abstract/document/5374427
https://www.sciencedirect.com/science/article/pii/S1877050910004515
https://www.sciencedirect.com/science/article/pii/S1877050910004515
https://ieeexplore.ieee.org/abstract/document/4359474
https://ieeexplore.ieee.org/abstract/document/4359474
https://dl.acm.org/doi/abs/10.1145/1111320.1111070
https://dl.acm.org/doi/abs/10.1145/1111320.1111070
https://link.springer.com/chapter/10.1007/978-3-540-71093-6_6
https://link.springer.com/chapter/10.1007/978-3-540-71093-6_6
https://ieeexplore.ieee.org/abstract/document/5635053
https://ieeexplore.ieee.org/abstract/document/5635053

