
Design and Implementation of Xilinx SoC FPGA

Based Custom IP for Scharr Edge Detection in

Real-Time Image Processing

1st Hema Chitra S

Associate Professor

 Department of Electronics and Communication Engineering

PSG College of Technology

Coimbatore, India

shc.ece@psgtech.ac.in

2rd Jenet S

Student, ME (VLSI DESIGN)

Department of Electronics and Communication Engineering

PSG College of Technology

Coimbatore, India

23mv06@psgtech.ac.in

Abstract—Real-time image processing plays a crucial role

in applications such as autonomous navigation, medical

imaging, and industrial automation, where high-speed and

accurate data analysis is essential. Traditional image

processing approaches often rely on standard IP cores that

process images in HEX format, limiting flexibility and

requiring format conversions. In contrast, this work

implements FPGA-based image processing operations with

BMP files directly used as both input and output. The

implemented system performs essential operations, including

blurring and edge detection using Prewitt, Scharr, Sobel, and

Laplacian methods. To evaluate the performance of these edge

detection techniques, edge density analysis is performed,

revealing that Scharr edge detection provides the most

accurate results. Based on this analysis, a dedicated custom IP

is developed for Scharr edge detection to enhance accuracy and

efficiency. Furthermore, the power, area, and timing efficiency

of the proposed system are examined, ensuring optimized

resource utilization for real-time FPGA-based image

processing applications. The modular and reusable IP cores

offer flexibility for various real-time image processing tasks.

Keywords—Custom IP, edge detection, real-time image processing,

efficiency, image bluring, SoC FPGA.

I. INTRODUCTION

Image processing is a critical component in a wide

range of modern technologies, enabling machines to

interpret, analyze, and manipulate visual data. The ability to

process and analyze images in real-time is particularly

essential in fields such as autonomous vehicles, medical

imaging, surveillance, industrial automation, and more.

These applications require fast, efficient, and precise

processing of visual data to make informed decisions and

improve operational efficiency. Image processing operations

include tasks such as noise reduction, edge detection, feature

extraction, image enhancement, and object recognition, all

of which are fundamental for extracting valuable

information from raw visual data[1]. Traditional image

processing systems rely on software-based solutions, which

offer flexibility but often fail to meet the real-time

performance and power efficiency requirements of many

modern applications. These solutions can be

computationally expensive, leading to delays that are

unacceptable in time-sensitive applications[1]. Additionally,

software implementations tend to consume significant

computational resources, making them inefficient for

applications that require continuous, high-speed data

processing. In contrast, Field-Programmable Gate Arrays

(FPGAs) provide a powerful alternative for implementing

real-time image processing systems. FPGAs offer the ability

to process data in parallel, significantly accelerating

processing speeds while maintaining low power

consumption[2]. These hardware platforms are highly

configurable, making them ideal for developing custom

image processing solutions that can be tailored to meet the

specific needs of an application. FPGAs can implement

highly optimized image processing operations by taking

advantage of hardware parallelism, pipelining, and

customized data flows, enabling faster and more efficient

processing compared to traditional general-purpose

processors.

One of the key advantages of FPGAs for image

processing is their ability to implement custom IP

(Intellectual Property) cores. Custom IP cores are

specialized logic designs that can be implemented on FPGA

hardware to perform specific tasks at high speeds with

minimal resource consumption[2]. These cores can be

reused and reconfigured for different image processing tasks,

offering flexibility, scalability, and optimization in real-time

systems. By leveraging FPGAs and custom IP cores, it

becomes possible to achieve high-performance image

processing solutions that can operate within the strict timing

and power constraints required by real-time applications[4].

However, challenges remain in optimizing image

processing workflows on FPGAs. These include minimizing

resource usage, ensuring high throughput, and managing

data efficiently, especially when handling large images or

multiple image processing tasks simultaneously. The design

of custom IP cores tailored to specific image processing

operations, such as brightness adjustment, edge detection,

and noise reduction, is essential to achieving the necessary

performance and power efficiency in FPGA-based

systems[3].

In this context, the use of FPGAs for image

processing has become increasingly important, and the

development of efficient, adaptable, and high-performance

custom IP cores is a key area of research. Such solutions are

critical for advancing real-time image processing in fields

such as autonomous navigation, medical diagnostics, and

industrial automation, where fast and accurate data analysis

is essential for successful operation.

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN: 2456-5717 VOLUME 11, ISSUE 7 - JULY 2025

30

II. RELATED WORK

In [21], the design and implementation of an

FPGA-based image processing system using the Zynq SoC

were explored. The study focused on performing essential

image processing operations, including brightness

adjustment, inversion, and thresholding, utilizing Xilinx

Vivado and SDK tools. The prototype was verified by

interfacing the Zynq processing system with an OLEDrgb

peripheral module through AXI interconnects. The system

efficiently processed images in HEX format, converting

BMP files to HEX before processing and reconverting the

output. While the work demonstrated the feasibility of

FPGA-based image processing, it primarily focused on

fundamental image enhancement techniques.

FPGA-based image processing has seen significant

advancements, with researchers exploring various

techniques to improve speed, efficiency, and accuracy for

real-time applications[2]. Edge detection, brightness

adjustment, thresholding, and blurring are fundamental

operations that have been widely studied and implemented.

Among edge detection techniques, Sobel and Prewitt remain

popular for their simplicity and computational efficiency,

though they are limited in detecting diagonal edges and

handling noise[6]. Scharr edge detection improves upon

these by offering better rotational symmetry, making it more

effective for detecting edges in complex or noisy images.

Laplacian methods, which calculate second-order

derivatives, provide higher sensitivity to intensity variations

but are prone to noise amplification[8].

In [1], the authors developed an FPGA-based

implementation of edge detection and image filtering using

the Sobel and Canny algorithms. The study highlighted the

trade-offs between computational complexity and edge

detection accuracy, with Canny providing superior results at

the cost of increased resource usage. This work

demonstrated the importance of balancing algorithm

complexity with hardware constraints.

In [2], the design of custom FPGA cores for

brightness and contrast adjustments was explored,

emphasizing the importance of resource optimization for

real-time performance. The authors noted that traditional IP

cores often suffer from inefficiencies when integrated into

larger systems, necessitating tailored solutions for specific

applications.

Recent works have also focused on integrating

hardware accelerators with embedded processors for

enhanced performance. For example, [3] presented a

hardware/software co-design approach for image processing

on the Xilinx Zynq platform. The system used the ARM

processor for high-level control and FPGAs for parallel

execution of tasks like grayscale conversion, edge detection,

and filtering. This hybrid approach showed significant

improvements in speed compared to pure software

implementations.

In addition to hardware-based solutions, research

has explored hybrid systems combining FPGAs with GPUs

or CPUs for specific tasks. In [7], a hybrid system was

developed to process high-resolution images using FPGAs

for preprocessing (e.g., filtering and edge detection) and

GPUs for computationally intensive tasks like object

recognition. This division of labor leveraged the strengths of

each platform to achieve a balance between speed and

resource utilization.

Despite these advancements, challenges remain in

optimizing power consumption, area utilization, and timing

performance for resource-constrained environments.

Existing solutions often struggle to achieve a balance

between flexibility and efficiency, highlighting the need for

custom designs tailored to specific application requirements.

This work builds on the progress made in previous studies

by introducing a custom IP that integrates multiple image

processing operations into a unified system, optimized for

real-time performance on FPGAs.

III. PROPOSED CUSTOM IP

The proposed custom IP is designed specifically

for real-time Scharr edge detection, while the Verilog

implementation includes additional edge detection methods

such as Prewitt, Sobel, Laplacian, and blurring operations.

The system processes 512x512 grayscale BMP images

directly, eliminating the need for intermediate HEX file

conversions and simplifying the workflow. A 3x3

convolution kernel is employed for neighborhood-based

processing, with a line buffer efficiently handling pixel data,

particularly in blurring and edge detection tasks. The

hardware architecture integrates the custom Scharr edge

detection IP with a Zynq Processing System (PS) using AXI

interconnects for high-bandwidth communication. A DMA

controller enhances efficiency by enabling direct memory

access, reducing CPU involvement, and ensuring continuous

data processing in real time. The workflow includes

implementing all core image processing operations in

Verilog, packaging only the Scharr edge detection module

as a custom IP in Xilinx Vivado, and integrating it with the

Zynq PS in a block design. A flowchart, shown in Fig. 1,

outlines the workflow, beginning with image input

preparation in BMP format and concluding with real-time

display or storage of results. This structured approach

ensures a seamless hardware-software co-design, optimizing

performance and adaptability for real-time image

processing.

Fig.1 Flow Chart of Proposed Custom IP Design

31

IV IMPLEMENTATION

The implementation of the proposed system

involves designing Verilog modules for image processing

operations, packaging them into a custom IP, and integrating

the IP into the hardware-software co-design. The system

processes grayscale images of 512x512 resolution directly

in BMP format. The original input image, as shown in Fig.2,

is a 512x512 grayscale BMP image that serves as the

baseline for all image processing operations. This image

was selected for its standard resolution, which is well-suited

for testing the system’s capabilities while maintaining
compatibility with the custom IP's architecture. The image

contains varying intensity levels, making it ideal for

demonstrating the effects of blurring, and edge detection.

Fig.2 Original Input Image

A. Blurring

Blurring reduces noise and smoothens the image by

averaging pixel values within a 3x3 neighborhood. This

operation prepares the image for subsequent edge detection

by eliminating high-frequency variations. The simulation in

Fig.3 waveform has an input pixel with a hexadecimal value

of 6B (decimal 107) produces an output pixel of 92 (decimal

146) after the averaging operation. This change illustrates

how box blur reduces sharp contrasts by adjusting pixel

intensities towards a local average. The signals in the

waveform indicate that the data is processed correctly in a

synchronous manner. The output image in Fig.4 shows a

softened version of the input image with reduced noise.

Fig.3 Simulation Result of Blur Operation

Fig.4 Blur Operation Output Image

B. Sobel Edge Detection

Sobel edge detection identifies edges in an image

by highlighting areas of rapid intensity change. Fig.5

illustrates the simulation waveform for the Sobel edge

detection operation, demonstrating the step-by-step

processing of pixel values. Three input files are used for

image processing, while two output files are generated one

for the processed image file and another for the processed

hex file. The imgData signal corresponds to the grayscale

pixel values of the original image before edge detection is

applied. This simulation verifies the correct implementation

of the Sobel filter by effectively detecting edges in the input

image. The outData signal outputs values of 0 and 255,

representing black and white pixel intensities, respectively,

which form the final edge-detected image. Output image in

Fig.6 displays clear vertical and horizontal edges. Sobel is

efficient for general edge detection but may lack precision

for diagonal edges.

Fig.5 Simulation Result of Sobel Operation

Fig.6 Sobel Operation Output Image

C. Prewitt Edge Detection

Prewitt edge detection works similarly to Sobel but

employs a simpler gradient calculation. It is less sensitive to

noise but provides comparable edge detection results. Fig.7

presents the simulation waveform for the Prewitt edge

detection operation, showcasing the sequential processing of

pixel values. The imgData signal represents the grayscale

intensity values of the original image before edge detection

is applied. The correctness of the Prewitt filter

implementation is validated through this simulation. The

outData signal produces values of 0 and 255, corresponding

to black and white pixel intensities, thereby forming the

final edge-detected image. while the output image in Fig.8

demonstrates the edges detected with slightly reduced

sensitivity to noise.

32

Fig.7 Simulation Result of Prewitt Operation

Fig.8 Prewitt Operation Output Image

D. Scharr Edge Detection

Scharr edge detection offers superior rotational

symmetry and is effective in detecting edges in complex

images. Fig.9 presents the simulation waveform for the

Scharr edge detection operation, showcasing the sequential

processing of pixel values. The imgData signal represents

the grayscale intensity values of the original image before

edge detection is applied. The correctness of the Scharr filter

implementation is validated through this simulation. The

outData signal produces values of 0 and 255, corresponding

to black and white pixel intensities, thereby forming the

final edge-detected image. Compared to other operators, the

Scharr filter applies an optimized kernel that enhances

gradient calculations, resulting in sharper and more distinct

edge detection. Output image in Fig.10 shows well-defined

edges with high clarity, making it particularly suitable for

high-precision applications.

Fig.9 Simulation Result of Scharr Operation

Fig.10 Scharr Operation Output Image

E. Laplacian Edge Detection

Laplacian edge detection uses second-order

derivatives to highlight regions of rapid intensity change.

This method is more sensitive to fine details but can amplify

noise. Fig.11 presents the simulation waveform for the

Laplacian edge detection operation, illustrating the pixel-

wise processing of the input image. The imgData signal

represents the grayscale intensity values of the original

image before edge detection is applied. The correctness of

the Laplacian filter implementation is validated through this

simulation, which calculates the second derivative of pixel

intensities to enhance edge detection. The outData signal

produces values of 0 and 255, corresponding to black and

white pixel intensities, thereby forming the final edge-

detected image. Unlike other gradient-based methods, the

The output image in Fig.12 reveals intricate edge details,

emphasizing the finer features of the input image.

Fig.11 Simulation Result of Laplacian Operation

Fig.12 Laplacian Operation Output Image

IV. PERFORMANCE METRICS

 In this work, edge density is calculated by

binarizing the edge-detected images and summing the

binary values to determine the number of detected edges.

The formula for edge density can be expressed as:

Edge Density =

(Number of Edge Pixels / Total Number of Pixels)

× 100

Where,

Number of Edge Pixels is the count of pixels detected as

edges (typically those with high gradient values after

applying an edge detection filter).

Total Number of Pixels is the total number of pixels in the

image (Width × Height).

33

Fig.13 Result for Edge Density

 Fig.13 presents the MATLAB results for edge

density across the different edge detection techniques. The

results clearly indicate that the Scharr edge detection

method consistently yields the highest edge density value,

followed by the Sobel, Prewitt, and Laplacian methods.

Based on this analysis, a custom IP for Scharr edge

detection is created to leverage its superior performance in

detecting edges with higher accuracy. By implementing the

Scharr operator as a dedicated hardware module, the system

achieves optimized processing speed and efficiency, making

it well-suited for real-time image processing applications.

V HARDWARE SYSTEM DESIGN FOR CUSTOM IP

The Custom IP (imageprocess_0) is illustrated in

Fig.14. This design connects the Custom IP to the Zynq

Processing System (PS) using AXI interconnects IP and a

DMA controller IP, ensuring efficient data transfer and

enabling real-time image processing. The Zynq PS, powered

by a dual-core ARM processor, serves as the central

controller, managing tasks such as configuring the custom

IP, handling data flow between external storage and the

Programmable Logic (PL), and executing application-level

software. The AXI interconnects IP core provide a high-

speed communication channel between the PS and the PL,

facilitating low-latency transfer of input data and processed

results. At the core of the system, the custom IP performs

operations like brightness adjustment, inversion,

thresholding, blurring, and edge detection in the PL. To

further enhance efficiency, a DMA controller IP core is

employed to handle direct memory transfers between the

system memory and the custom IP. This minimizes CPU

involvement in data handling, allowing the processor to

focus on higher-level control tasks. The DMA ensures

continuous and high-speed streaming of image data, critical

for achieving real-time performance.

The block diagram in Fig.14 showcases how the

PS, custom IP, DMA controller, and memory are

interconnected. Here input gray scale image(barbara.bmp)

is transferred by the custom IP via the DMA. The processed

image is written back to memory, where they can be

accessed for display or storage. This hardware-software co-

design leverages the processing capabilities of the FPGA for

acceleration while maintaining the flexibility of the ARM

processor for system management. The architecture

effectively combines parallelism, low-latency data handling,

and resource efficiency, making it ideal for high-

performance real-time image processing applications.

Fig.14 Hardware System Design of Proposed Custom IP

System

VI RESULT AND DISCUSSION

 Performance metrics underscore the efficiency of

the custom IP, with detailed analysis highlighting

improvements in power consumption, area utilization, and

timing performance. The power analysis, as shown in

Fig.15, indicates a reduction in static power consumption.

Fig.15 Power Report

The area utilization results, illustrated in Fig.16,

demonstrates the optimal use of FPGA resources, ensuring

scalability. The compact design of the custom IP balances

functionality and resource usage, allowing for effective

integration into the Zynq-based architecture.

Fig.16 Area Report

The timing analysis, as depicted in Fig.17,

confirms that the design meets real-time processing

requirements, with a slack time of zero, ensuring optimal

performance.

34

Fig.17 Timing Report

Among edge detection techniques, Scharr achieves

the highest edge density, as reflected in the analysis,

providing superior sensitivity and accuracy in identifying

edges. Visual results for operations like blurring, and edge

detection, further validate the system's functionality. The

clear and noise-free outputs are achieved through precise

kernel operations and efficient data handling. The ability to

process BMP images directly simplifies the workflow and

enhances system usability, making the design practical for

real-world applications. Each metric power, area, and timing

demonstrate the system's capability to balance efficiency

and performance effectively.

VI CONCLUSION AND FUTURE WORK

This work presents the design and implementation

of a Custom IP for Scharr edge detection on Xilinx SoC

FPGA, overcoming the limitations of standard IP cores. By

developing a dedicated IP for Scharr edge detection, the

system achieves enhanced processing efficiency and

accuracy, making it well-suited for real-time image

processing applications. Performance evaluation in terms of

power, area, and timing metrics demonstrates the

effectiveness of the proposed approach, highlighting its

suitability for high-speed edge detection tasks. The results

confirm that FPGA-based solutions provide an optimized

and efficient framework for real-time image processing.

Future work will focus on extending the IP to

support color images and implementing adaptive processing

techniques using machine learning. Additional image

processing operations, such as sharpening can also be

integrated. By building on the proposed system, this work

aims to further advance the field of FPGA-based image

processing, catering to emerging demands in automation,

healthcare, and security.

REFERENCES

[1] V. S. Surwase and S. N. Pawar, “VLSI implementation of image
processing algorithms on FPGA,” International Journal of Electronic
and Electrical Engineering, vol. 3, pp. 139–145, 2010.

[2] Kim, J.H. and Cho, J.D., “A Real-Time 3D Image Refinement Using

Two-Line Buffers,” in Proceedings of the 13th International
Conference on Advanced Communication Technology (ICACT2011),

IEEE, pp. 778-781, February 2011.

[3] S. Samanta, S. Paik, S. Gangopadhyay, and A. Chakrabarti,
“Processing of image data using FPGA-based microblaze core,”
Springer, ResearchGate, pp. 241–246, 2011.

[4] J. M. Maatta, J. Vanne, T. D. Hamalainen, and J. Nikkanen, “Generic
software framework for a line-buffer-based image processing

pipeline,” IEEE Transactions on Consumer Electronics, vol. 57, no. 3,
pp. 1442–1449, 2011.

[5] N. H. J. A. Ahmad and A. Amira, “FPGA-based implementation of 3-

D Daubechies for medical image compression,” 2019 Third
International Conference on Inventive Systems and Control (ICISC),

pp. 683–688, 2012.

[6] I. Chiuchisan, “A New FPGA-Based Real-Time Configurable System
for Medical Image Processing,” in Proceedings of the 4th IEEE

International Conference on E-Health and Bioengineering, pp. 1–5,

2013.
[7] N. P. Raut and A. V. Gokhale, “FPGA Implementation for Image

Processing Algorithms Using Xilinx System Generator,” Journal of

VLSI and Signal Processing, vol. 2, no. 4, pp. 1–6, Jun. 2013.
[8] C. Wang and S. Zhu, “A design of FPGA-based system for image

processing,” Review of Computer Engineering Studies, vol. 2, pp. 25–
30, 2015.

[9] H. H. Al-Ithawi and A. M. M. Abderazek, “Real-Time Image

Processing Using Xilinx FPGA,” Journal of Applied Science and

Engineering Research, vol. 4, no. 3, pp. 109-114, 2015.
[10] M. A. Altuncu, T. Guven, Y. Becerikli, and S. Sahin, “Real-Time

System Implementation for Image Processing with

Hardware/Software Co-Design on the Xilinx Zynq Platform,”
International Journal of Information and Electronics Engineering,

vol. 5, no. 6, pp. 466–470, Nov. 2015.

[11] C. S. P. Reddy and P. K. Sahu, “FPGA-Based Implementation of
Image Processing Algorithms Using Verilog,” International Journal

of Engineering Research & Technology, vol. 5, no. 5, pp. 712-718,
2016.

[12] A. R. M. Hamzah, F. Mohd-Yusof, and H. A. F. Awang, “High-

Performance Image Processing Using Custom IPs on FPGA,” Journal
of Real-Time Image Processing, vol. 14, pp. 1005-1018, 2017.

[13] C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and P. Bekaert, "Color

Balance and Fusion for Underwater Image Enhancement," IEEE
Transactions on Image Processing, vol. 27, no. 1, pp. 379–393, Jan.

2018.

[14] A. A. Azam, S. F. Khan, and A. Z. Qamar, “Design and
Implementation of Image Processing Algorithms Using Zedboard,”
International Journal of Computer Applications, vol. 179, no. 40, pp.

1-6, 2018.
[15] A. HajiRassouliha, A. J. Taberner, M. P. Nash, and P. M. F. Nielsen,

“Hardware implementation of image processing algorithms on
FPGA,” Elsevier, Signal Processing Image Communication, vol. 68,
pp. 35-42, 2018.

[16] R. K. Ranjan, M. Bharti, and R. Kumar, “Implementation of Image
Processing Applications on Zynq-7000 SoC,” International Journal
of Engineering Research and Applications, vol. 9, no. 5, pp. 51-58,

2019.

[17] K. P. Anjaneyulu and D. R. Patil, “A Novel Image Processing
Framework for FPGA-Based Implementation,” International Journal

of Engineering and Advanced Technology, vol. 8, no. 6, pp. 529-532,

2019.
[18] D. A. Devi, T. S. Savithri, and S. Sugun.L, “Design and

implementation of real time data acquisition system using

reconfigurable soc,” International Journal of Advanced Computer
Science and Applications, vol. 11, no. 9, pp. 325–331, 2020.

[19] D. Lee and Y. Kim, “FPGA-Based Implementation of Image Filtering

using 3x3 Kernel with AXI Interface in Vivado,” Journal of Imaging
Systems and Technology, vol. 56, no. 3, pp. 125–134, 2020.

[20] G. Alaverdian, A. Mkrtchyan, M. Minasyan, and D. Akopyan, “Image
Processing on FPGAs: Design and Implementation with Vivado

HLS,” International Journal of Electronics and Communications, vol.

118, pp. 35–42, Jan. 2021.

[21] D. A. Devi, N. R. Kathula, G. Kalluri, and L. S. Bondalapati, “Design
and implementation of image processing application with zynq SoC,”
International Journal of Computing and Digital Systems, vol. 12, pp.

1–10, 2023.
[22] https://www.hlevkin.com/hlevkin/06testimages.htm

35

