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Abstract—Real-time image processing plays a crucial role 

in applications such as autonomous navigation, medical 

imaging, and industrial automation, where high-speed and 

accurate data analysis is essential. Traditional image 

processing approaches often rely on standard IP cores that 

process images in HEX format, limiting flexibility and 

requiring format conversions. In contrast, this work 

implements FPGA-based image processing operations with 

BMP files directly used as both input and output. The 

implemented system performs essential operations, including 

blurring and edge detection using Prewitt, Scharr, Sobel, and 

Laplacian methods. To evaluate the performance of these edge 

detection techniques, edge density analysis is performed, 

revealing that Scharr edge detection provides the most 

accurate results. Based on this analysis, a dedicated custom IP 

is developed for Scharr edge detection to enhance accuracy and 

efficiency. Furthermore, the power, area, and timing efficiency 

of the proposed system are examined, ensuring optimized 

resource utilization for real-time FPGA-based image 

processing applications. The modular and reusable IP cores 

offer flexibility for various real-time image processing tasks. 

Keywords—Custom IP, edge detection, real-time image processing, 

efficiency, image bluring, SoC FPGA. 

I. INTRODUCTION  

Image processing is a critical component in a wide 

range of modern technologies, enabling machines to 

interpret, analyze, and manipulate visual data. The ability to 

process and analyze images in real-time is particularly 

essential in fields such as autonomous vehicles, medical 

imaging, surveillance, industrial automation, and more. 

These applications require fast, efficient, and precise 

processing of visual data to make informed decisions and 

improve operational efficiency. Image processing operations 

include tasks such as noise reduction, edge detection, feature 

extraction, image enhancement, and object recognition, all 

of which are fundamental for extracting valuable 

information from raw visual data[1]. Traditional image 

processing systems rely on software-based solutions, which 

offer flexibility but often fail to meet the real-time 

performance and power efficiency requirements of many 

modern applications. These solutions can be 

computationally expensive, leading to delays that are 

unacceptable in time-sensitive applications[1]. Additionally, 

software implementations tend to consume significant 

computational resources, making them inefficient for 

applications that require continuous, high-speed data 

processing. In contrast, Field-Programmable Gate Arrays 

(FPGAs) provide a powerful alternative for implementing 

real-time image processing systems. FPGAs offer the ability 

to process data in parallel, significantly accelerating 

processing speeds while maintaining low power 

consumption[2]. These hardware platforms are highly 

configurable, making them ideal for developing custom 

image processing solutions that can be tailored to meet the 

specific needs of an application. FPGAs can implement 

highly optimized image processing operations by taking 

advantage of hardware parallelism, pipelining, and 

customized data flows, enabling faster and more efficient 

processing compared to traditional general-purpose 

processors. 

One of the key advantages of FPGAs for image 

processing is their ability to implement custom IP 

(Intellectual Property) cores. Custom IP cores are 

specialized logic designs that can be implemented on FPGA 

hardware to perform specific tasks at high speeds with 

minimal resource consumption[2]. These cores can be 

reused and reconfigured for different image processing tasks, 

offering flexibility, scalability, and optimization in real-time 

systems. By leveraging FPGAs and custom IP cores, it 

becomes possible to achieve high-performance image 

processing solutions that can operate within the strict timing 

and power constraints required by real-time applications[4]. 

However, challenges remain in optimizing image 

processing workflows on FPGAs. These include minimizing 

resource usage, ensuring high throughput, and managing 

data efficiently, especially when handling large images or 

multiple image processing tasks simultaneously. The design 

of custom IP cores tailored to specific image processing 

operations, such as brightness adjustment, edge detection, 

and noise reduction, is essential to achieving the necessary 

performance and power efficiency in FPGA-based 

systems[3]. 

In this context, the use of FPGAs for image 

processing has become increasingly important, and the 

development of efficient, adaptable, and high-performance 

custom IP cores is a key area of research. Such solutions are 

critical for advancing real-time image processing in fields 

such as autonomous navigation, medical diagnostics, and 

industrial automation, where fast and accurate data analysis 

is essential for successful operation. 
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II. RELATED WORK 

In [21], the design and implementation of an 

FPGA-based image processing system using the Zynq SoC 

were explored. The study focused on performing essential 

image processing operations, including brightness 

adjustment, inversion, and thresholding, utilizing Xilinx 

Vivado and SDK tools. The prototype was verified by 

interfacing the Zynq processing system with an OLEDrgb 

peripheral module through AXI interconnects. The system 

efficiently processed images in HEX format, converting 

BMP files to HEX before processing and reconverting the 

output. While the work demonstrated the feasibility of 

FPGA-based image processing, it primarily focused on 

fundamental image enhancement techniques. 

FPGA-based image processing has seen significant 

advancements, with researchers exploring various 

techniques to improve speed, efficiency, and accuracy for 

real-time applications[2]. Edge detection, brightness 

adjustment, thresholding, and blurring are fundamental 

operations that have been widely studied and implemented. 

Among edge detection techniques, Sobel and Prewitt remain 

popular for their simplicity and computational efficiency, 

though they are limited in detecting diagonal edges and 

handling noise[6]. Scharr edge detection improves upon 

these by offering better rotational symmetry, making it more 

effective for detecting edges in complex or noisy images. 

Laplacian methods, which calculate second-order 

derivatives, provide higher sensitivity to intensity variations 

but are prone to noise amplification[8]. 

In [1], the authors developed an FPGA-based 

implementation of edge detection and image filtering using 

the Sobel and Canny algorithms. The study highlighted the 

trade-offs between computational complexity and edge 

detection accuracy, with Canny providing superior results at 

the cost of increased resource usage. This work 

demonstrated the importance of balancing algorithm 

complexity with hardware constraints. 

In [2], the design of custom FPGA cores for 

brightness and contrast adjustments was explored, 

emphasizing the importance of resource optimization for 

real-time performance. The authors noted that traditional IP 

cores often suffer from inefficiencies when integrated into 

larger systems, necessitating tailored solutions for specific 

applications. 

Recent works have also focused on integrating 

hardware accelerators with embedded processors for 

enhanced performance. For example, [3] presented a 

hardware/software co-design approach for image processing 

on the Xilinx Zynq platform. The system used the ARM 

processor for high-level control and FPGAs for parallel 

execution of tasks like grayscale conversion, edge detection, 

and filtering. This hybrid approach showed significant 

improvements in speed compared to pure software 

implementations. 

In addition to hardware-based solutions, research 

has explored hybrid systems combining FPGAs with GPUs 

or CPUs for specific tasks. In [7], a hybrid system was 

developed to process high-resolution images using FPGAs 

for preprocessing (e.g., filtering and edge detection) and 

GPUs for computationally intensive tasks like object 

recognition. This division of labor leveraged the strengths of 

each platform to achieve a balance between speed and 

resource utilization. 

Despite these advancements, challenges remain in 

optimizing power consumption, area utilization, and timing 

performance for resource-constrained environments. 

Existing solutions often struggle to achieve a balance 

between flexibility and efficiency, highlighting the need for 

custom designs tailored to specific application requirements. 

This work builds on the progress made in previous studies 

by introducing a custom IP that integrates multiple image 

processing operations into a unified system, optimized for 

real-time performance on FPGAs. 

III. PROPOSED  CUSTOM  IP 

The proposed custom IP is designed specifically 

for real-time Scharr edge detection, while the Verilog 

implementation includes additional edge detection methods 

such as Prewitt, Sobel, Laplacian, and blurring operations. 

The system processes 512x512 grayscale BMP images 

directly, eliminating the need for intermediate HEX file 

conversions and simplifying the workflow. A 3x3 

convolution kernel is employed for neighborhood-based 

processing, with a line buffer efficiently handling pixel data, 

particularly in blurring and edge detection tasks. The 

hardware architecture integrates the custom Scharr edge 

detection IP with a Zynq Processing System (PS) using AXI 

interconnects for high-bandwidth communication. A DMA 

controller enhances efficiency by enabling direct memory 

access, reducing CPU involvement, and ensuring continuous 

data processing in real time. The workflow includes 

implementing all core image processing operations in 

Verilog, packaging only the Scharr edge detection module 

as a custom IP in Xilinx Vivado, and integrating it with the 

Zynq PS in a block design. A flowchart, shown in Fig. 1, 

outlines the workflow, beginning with image input 

preparation in BMP format and concluding with real-time 

display or storage of results. This structured approach 

ensures a seamless hardware-software co-design, optimizing 

performance and adaptability for real-time image 

processing. 

 

 
 

Fig.1 Flow Chart of Proposed Custom IP Design 
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IV IMPLEMENTATION 

 

The implementation of the proposed system 

involves designing Verilog modules for image processing 

operations, packaging them into a custom IP, and integrating 

the IP into the hardware-software co-design. The system 

processes grayscale images of 512x512 resolution directly 

in BMP format. The original input image, as shown in Fig.2, 

is a 512x512 grayscale BMP image that serves as the 

baseline for all image processing operations. This image 

was selected for its standard resolution, which is well-suited 

for testing the system’s capabilities while maintaining 
compatibility with the custom IP's architecture. The image 

contains varying intensity levels, making it ideal for 

demonstrating the effects of blurring, and edge detection.  

 

 
Fig.2 Original Input Image 

 

A. Blurring 

Blurring reduces noise and smoothens the image by 

averaging pixel values within a 3x3 neighborhood. This 

operation prepares the image for subsequent edge detection 

by eliminating high-frequency variations. The simulation in 

Fig.3 waveform has an input pixel with a hexadecimal value 

of 6B (decimal 107) produces an output pixel of 92 (decimal 

146) after the averaging operation. This change illustrates 

how box blur reduces sharp contrasts by adjusting pixel 

intensities towards a local average. The signals in the 

waveform indicate that the data is processed correctly in a 

synchronous manner. The output image in Fig.4 shows a 

softened version of the input image with reduced noise. 

 
Fig.3 Simulation Result of Blur Operation 

 

 

Fig.4 Blur Operation Output Image 

B. Sobel Edge Detection 

Sobel edge detection identifies edges in an image 

by highlighting areas of rapid intensity change. Fig.5 

illustrates the simulation waveform for the Sobel edge 

detection operation, demonstrating the step-by-step 

processing of pixel values. Three input files are used for 

image processing, while two output files are generated one 

for the processed image file and another for the processed 

hex file. The imgData signal corresponds to the grayscale 

pixel values of the original image before edge detection is 

applied. This simulation verifies the correct implementation 

of the Sobel filter by effectively detecting edges in the input 

image. The outData signal outputs values of 0 and 255, 

representing black and white pixel intensities, respectively, 

which form the final edge-detected image. Output image in 

Fig.6 displays clear vertical and horizontal edges. Sobel is 

efficient for general edge detection but may lack precision 

for diagonal edges. 

 

 
Fig.5 Simulation Result of Sobel Operation 

 

 
Fig.6 Sobel Operation Output Image 

 

C. Prewitt Edge Detection 

Prewitt edge detection works similarly to Sobel but 

employs a simpler gradient calculation. It is less sensitive to 

noise but provides comparable edge detection results. Fig.7 

presents the simulation waveform for the Prewitt edge 

detection operation, showcasing the sequential processing of 

pixel values. The imgData signal represents the grayscale 

intensity values of the original image before edge detection 

is applied. The correctness of the Prewitt filter 

implementation is validated through this simulation. The 

outData signal produces values of 0 and 255, corresponding 

to black and white pixel intensities, thereby forming the 

final edge-detected image. while the output image in Fig.8 

demonstrates the edges detected with slightly reduced 

sensitivity to noise. 
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Fig.7 Simulation Result of Prewitt Operation 

 

 
Fig.8 Prewitt Operation Output Image 

 

D. Scharr Edge Detection 

Scharr edge detection offers superior rotational 

symmetry and is effective in detecting edges in complex 

images. Fig.9 presents the simulation waveform for the 

Scharr edge detection operation, showcasing the sequential 

processing of pixel values. The imgData signal represents 

the grayscale intensity values of the original image before 

edge detection is applied. The correctness of the Scharr filter 

implementation is validated through this simulation. The 

outData signal produces values of 0 and 255, corresponding 

to black and white pixel intensities, thereby forming the 

final edge-detected image. Compared to other operators, the 

Scharr filter applies an optimized kernel that enhances 

gradient calculations, resulting in sharper and more distinct 

edge detection. Output image in Fig.10 shows well-defined 

edges with high clarity, making it particularly suitable for 

high-precision applications. 

 

 
Fig.9 Simulation Result of Scharr Operation 

 

 
Fig.10 Scharr Operation Output Image 

 

E. Laplacian Edge Detection 

Laplacian edge detection uses second-order 

derivatives to highlight regions of rapid intensity change. 

This method is more sensitive to fine details but can amplify 

noise. Fig.11 presents the simulation waveform for the 

Laplacian edge detection operation, illustrating the pixel-

wise processing of the input image. The imgData signal 

represents the grayscale intensity values of the original 

image before edge detection is applied. The correctness of 

the Laplacian filter implementation is validated through this 

simulation, which calculates the second derivative of pixel 

intensities to enhance edge detection. The outData signal 

produces values of 0 and 255, corresponding to black and 

white pixel intensities, thereby forming the final edge-

detected image. Unlike other gradient-based methods, the 

The output image in Fig.12 reveals intricate edge details, 

emphasizing the finer features of the input image. 

 

 
Fig.11 Simulation Result of Laplacian Operation 

 

 
 

Fig.12 Laplacian Operation Output Image 

 

IV. PERFORMANCE METRICS 

 In this work, edge density is calculated by 

binarizing the edge-detected images and summing the 

binary values to determine the number of detected edges. 

The formula for edge density can be expressed as: 

Edge Density = 

(Number of Edge Pixels / Total Number of Pixels) 

× 100  

Where, 

Number of Edge Pixels is the count of pixels detected as 

edges (typically those with high gradient values after 

applying an edge detection filter). 

Total Number of Pixels is the total number of pixels in the 

image (Width × Height). 
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Fig.13 Result for Edge Density 

 

 Fig.13 presents the MATLAB results for edge 

density across the different edge detection techniques. The 

results clearly indicate that the Scharr edge detection 

method consistently yields the highest edge density value, 

followed by the Sobel, Prewitt, and Laplacian methods. 

Based on this analysis, a custom IP for Scharr edge 

detection is created to leverage its superior performance in 

detecting edges with higher accuracy. By implementing the 

Scharr operator as a dedicated hardware module, the system 

achieves optimized processing speed and efficiency, making 

it well-suited for real-time image processing applications. 

 

V HARDWARE SYSTEM DESIGN FOR CUSTOM IP 

 

The Custom IP (imageprocess_0) is illustrated in 

Fig.14. This design connects the Custom IP to the Zynq 

Processing System (PS) using AXI interconnects IP and a 

DMA controller IP, ensuring efficient data transfer and 

enabling real-time image processing. The Zynq PS, powered 

by a dual-core ARM processor, serves as the central 

controller, managing tasks such as configuring the custom 

IP, handling data flow between external storage and the 

Programmable Logic (PL), and executing application-level 

software. The AXI interconnects IP core provide a high-

speed communication channel between the PS and the PL, 

facilitating low-latency transfer of input data and processed 

results. At the core of the system, the custom IP performs 

operations like brightness adjustment, inversion, 

thresholding, blurring, and edge detection in the PL. To 

further enhance efficiency, a DMA controller IP core is 

employed to handle direct memory transfers between the 

system memory and the custom IP. This minimizes CPU 

involvement in data handling, allowing the processor to 

focus on higher-level control tasks. The DMA ensures 

continuous and high-speed streaming of image data, critical 

for achieving real-time performance. 

The block diagram in Fig.14 showcases how the 

PS, custom IP, DMA controller, and memory are 

interconnected. Here input gray scale image( barbara.bmp) 

is transferred by the custom IP via the DMA. The processed 

image is written back to memory, where they can be 

accessed for display or storage. This hardware-software co-

design leverages the processing capabilities of the FPGA for 

acceleration while maintaining the flexibility of the ARM 

processor for system management. The architecture 

effectively combines parallelism, low-latency data handling, 

and resource efficiency, making it ideal for high-

performance real-time image processing applications. 

 

 
Fig.14 Hardware System Design of Proposed Custom IP 

System 

 

VI RESULT AND DISCUSSION 

 

 Performance metrics underscore the efficiency of 

the custom IP, with detailed analysis highlighting 

improvements in power consumption, area utilization, and 

timing performance. The power analysis, as shown in 

Fig.15, indicates a reduction in static power consumption. 

 

 
Fig.15 Power Report 

 

The area utilization results, illustrated in Fig.16, 

demonstrates the optimal use of FPGA resources, ensuring 

scalability. The compact design of the custom IP balances 

functionality and resource usage, allowing for effective 

integration into the Zynq-based architecture. 

 

 
Fig.16 Area Report 

 

The timing analysis, as depicted in Fig.17, 

confirms that the design meets real-time processing 

requirements, with a slack time of zero, ensuring optimal 

performance.  
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Fig.17 Timing Report 

 

Among edge detection techniques, Scharr achieves 

the highest edge density, as reflected in the analysis, 

providing superior sensitivity and accuracy in identifying 

edges. Visual results for operations like blurring, and edge 

detection, further validate the system's functionality. The 

clear and noise-free outputs are achieved through precise 

kernel operations and efficient data handling. The ability to 

process BMP images directly simplifies the workflow and 

enhances system usability, making the design practical for 

real-world applications. Each metric power, area, and timing 

demonstrate the system's capability to balance efficiency 

and performance effectively. 

 

 

VI CONCLUSION AND FUTURE WORK 

 

This work presents the design and implementation 

of a Custom IP for Scharr edge detection on Xilinx SoC 

FPGA, overcoming the limitations of standard IP cores. By 

developing a dedicated IP for Scharr edge detection, the 

system achieves enhanced processing efficiency and 

accuracy, making it well-suited for real-time image 

processing applications. Performance evaluation in terms of 

power, area, and timing metrics demonstrates the 

effectiveness of the proposed approach, highlighting its 

suitability for high-speed edge detection tasks. The results 

confirm that FPGA-based solutions provide an optimized 

and efficient framework for real-time image processing. 

Future work will focus on extending the IP to 

support color images and implementing adaptive processing 

techniques using machine learning. Additional image 

processing operations, such as sharpening can also be 

integrated. By building on the proposed system, this work 

aims to further advance the field of FPGA-based image 

processing, catering to emerging demands in automation, 

healthcare, and security. 
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