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Abstract— Wireless networks are the major sources of many attacks because of its wireless nature. Sybil attacks are one of the vulnerable 

attacks in wireless networks. In Sybil attack a malicious node holds more than one identity in order to gain excessive influence of other nodes. In 

the existing system they proposed a technique Mason test for detecting Sybil attack for ad hoc delay tolerant networks in wireless networks which 

suitable for802.11 based devices. In that they proposed with trusted neighbor’s data collection technique with the help of RSSI values of 

neighboring nodes. For that they used with signal print-based Sybil attack detection method without mutual trust. The RSSI value of neighbor is 

shared to all the nodes in the network and it could be observed. From that we could identify the lying neighbor node. 

In our proposed system we are going to use Random Password Comparison (RPC) technique for detecting Sybil attack in ad hoc delay 

tolerant networks. This technique is compare nodes ID, Time and password of the lying neighboring node. If all the parameters of a particular node 

is match that node is identified as a non Sybil node otherwise Sybil node. Finally our simulation result shows that the proposed system consumes 

less amount of energy when compared to the existing system. 
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   (i). INTRODUCTION 

A wireless network is any type of computer network that uses 

wireless data connections for connecting network nodes. Wireless 

networking is a method by which homes, telecommunications networks 

and enterprise (business) installations avoid the costly process of 

introducing cables into a building, or as a connection between various 

equipment locations. Wireless telecommunications networks are 

generally implemented and administered using radio communication. 

This implementation takes place at the physical level (layer) of the OSI 

model network structure. Examples of wireless networks include cell 

phone networks, Wi-Fi local networks and terrestrial microwave 

networks. 

Small businesses can experience many benefits from a wireless 

network, including: 

    Convenience: Access your network resources from any 

location within your wireless network's coverage area or from any WiFi 

hotspot. 

    Mobility: You're no longer tied to your desk, as you were 

with a wired connection. You and your employees can go online in 

conference room meetings, for example. 

    Productivity: Wireless access to the Internet and to your 

company's key applications and resources helps your staff get the job 

done and encourages collaboration. 

    Easy setup: You don't have to string cables, so installation 

can be quick and cost-effective. 

    Expandable: You can easily expand wireless networks with 

existing equipment, while a wired network might require additional 

wiring. 

    Security: Advances in wireless networks provide robust 

security protections. 

    Cost: Because wireless networks eliminate or reduce wiring 

costs, they can cost less to operate than wired networks. 

 

Types: 

 WLANS: Wireless Local Area Networks 

 WPANS: Wireless Personal Area Networks 

 WMANS: Wireless Metropolitan Area Networks 

 WWANS: Wireless Wide Area Networks 

 Global area network 

 Space network 

Ad hoc networks: 

An ad-hoc network is a local area network (LAN) that is built 

spontaneously as devices connect. Instead of relying on a base station to 

coordinate the flow of messages to each node in the network, the 

individual network nodes forward packets to and from each other. In 

Latin, ad hoc literally means "for this," meaning "for this special purpose" 

and also, by extension, improvised. Basically, an ad hoc network is a 

temporary network connection created for a specific purpose (such as 

transferring data from one computer to another). If the network is set up 

for a longer period of time, it is just a plain old local area network (LAN). 

A mobile ad hoc network (MANET) is a continuously self-

configuring, infrastructure-less network of mobile devices connected 

without wires. Ad hoc is Latin and means "for this purpose. Each device 

in a MANET is free to move independently in any direction, and will 
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therefore change its links to other devices frequently. Each must 

forward traffic unrelated to its own use, and therefore be a router. The 

primary challenge in building a MANET is equipping each device to 

continuously maintain the information required to properly route traffic. 

Such networks may operate by themselves or may be connected to the 

larger Internet. They may contain one or multiple and different 

transceivers between nodes. This results in a highly dynamic, 

autonomous topology. 

MANETs are a kind of Wireless ad hoc network that usually 

has a routable networking environment on top of a Link Layer ad hoc 

network. MANETs consist of a peer-to-peer, self-forming, self-healing 

network. MANETs circa 2000-2015 typically communicate at radio 

frequencies (30 MHz - 5 GHz). The growth of laptops and 802.11/Wi-Fi 

wireless networking has made MANETs a popular research topic since 

the mid-1990s. Many academic papers evaluate protocols and their 

abilities, assuming varying degrees of mobility within a bounded space, 

usually with all nodes within a few hops of each other. Different 

protocols are then evaluated based on measures such as the packet drop 

rate, the overhead introduced by the routing protocol, end-to-end packet 

delays, network throughput, ability to scale, etc. 

A wireless ad hoc network (WANET) is a decentralized type of 

wireless network. The network is ad hoc because it does not rely on a 

pre existing infrastructure, such as routers in wired networks or access 

points in managed (infrastructure) wireless networks. Instead, each node 

participates in routing by forwarding data for other nodes, so the 

determination of which nodes forward data is made dynamically on the 

basis of network connectivity. In addition to the classic routing, ad hoc 

networks can use flooding for forwarding data. Wireless mobile ad hoc 

networks are self-configuring, dynamic networks in which nodes are 

free to move. Wireless networks lack the complexities of infrastructure 

setup and administration, enabling devices to create and join networks 

"on the fly" - anywhere, anytime. 

Application: 

 Mobile ad hoc networks (MANET) 

 Vehicular Ad hoc Networks (VANETs) 

 Smart Phone Ad hoc Networks (SPANs) 

 Internet based mobile ad hoc networks (iMANETs) 

 Military / Tactical MANETs 

Sybil attack: 

The Sybil attack in computer security is an attack wherein a 

reputation system is subverted by forging identities in peer-to-peer 

networks. It is named after the subject of the book Sybil, a case study of 

a woman diagnosed with dissociative identity disorder. In a Sybil attack 

the attacker subverts the reputation system of a peer-to-peer network by 

creating a large number of pseudonymous identities, using them to gain 

a disproportionately large influence. A reputation system's vulnerability 

to a Sybil attack depends on how cheaply identities can be generated, 

the degree to which the reputation system accepts inputs from entities 

that do not have a chain of trust linking them to a trusted entity, and 

whether the reputation system treats all entities identically. 

An entity on a peer-to-peer network is a piece of software 

which has access to local resources. An entity advertises itself on the 

peer-to-peer network by presenting an identity. More than one identity 

can correspond to a single entity. In other words, the mapping of 

identities to entities is many to one. Entities in peer-to-peer networks 

use multiple identities for purposes of redundancy, resource sharing, 

reliability and integrity. In peer-to-peer networks, the identity is used as 

an abstraction so that a remote entity can be aware of identities without 

necessarily knowing the correspondence of identities to local entities. 

By default, each distinct identity is usually assumed to correspond to a 

distinct local entity. In reality many identities may correspond to the 

same local entity. 

A faulty node or an adversary may present multiple identities to 

a peer-to-peer network in order to appear and function as multiple distinct 

nodes. After becoming part of the peer-to-peer network, the adversary 

may then overhear communications or act maliciously. By masquerading 

and presenting multiple identities, the adversary can control the network 

substantially. Sybil attacks have appeared in many scenarios, with wide 

implications for security, safety and trust. For example, an internet poll 

can be rigged using multiple IP addresses to submit a large number of 

votes. There are few sure-fire ways to protect a network from a Sybil 

attack, but there is a wide range of literature dedicated to discussing 

options for protection and verification of computing identities.  

One way is by using trusted certification in which a single, 

central authority establishes and verifies each identity via a certificate. 

Trusted certification is not foolproof, however, and it can use up large 

amounts of resources and bottleneck traffic on the network. 

Security: 

Security is the degree of resistance to, or protection from, harm. 

It applies to any vulnerable and valuable asset, such as a person, dwelling, 

community, nation, or organization. Security theater is a critical term for 

deployment of measures primarily aimed at raising subjective security 

without a genuine or commensurate concern for the effects of that 

measure on objective security. For example, some consider the screening 

of airline passengers based on static databases to have been Security 

Theater and Computer Assisted Passenger Prescreening System to have 

created a decrease in objective security. 

Perception of security can increase objective security when it 

affects or deters malicious behavior, as with visual signs of security 

protections, such as video surveillance, alarm systems in a home, or an 

anti-theft system in a car such as a vehicle tracking system or warning 

sign. Since some intruders will decide not to attempt to break into such 

areas or vehicles, there can actually be less damage to windows in 

addition to protection of valuable objects inside. Without such 

advertisement, an intruder might, for example, approach a car, break the 

window, and then flee in response to an alarm being triggered. Either 

way, perhaps the car itself and the objects inside aren't stolen, but with 

perceived security even the windows of the car have a lower chance of 

being damaged. 

Network security consists of the policies adopted to prevent and 

monitor authorized access, misuse, modification, or denial of a computer 

network and network-accessible resources. Network security involves the 

authorization of access to data in a network, which is controlled by the 

network administrator. Network security covers a variety of computer 

networks, both public and private, that are used in everyday jobs; 

conducting transactions and communications among businesses, 

government agencies and individuals. Networks can be private, such as 

within a company, and others which might be open to public access. 

Network security is involved in organizations, enterprises, and other types 

of institutions. It does as its title explains: It secures the network, as well 

as protecting and overseeing operations being done. The most common 

and simple way of protecting a network resource is by assigning it a 

unique name and a corresponding password. 

Types of Attacks 

Networks are subject to attacks from malicious sources. Attacks 

can be from two categories: "Passive" when a network intruder intercepts 

data traveling through the network, and "Active" in which an intruder 

initiates commands to disrupt the network's normal operation.[4] 

Types of attacks include: 

    Passive 

 Network 

 Port scanner 

 Wiretapping 



 

 

 Idle scan 

    Active 

 DNS spoofing 

 Man in the middle 

 Denial-of-service attack 

 ARP poisoning 

 VLAN_hopping 

 Smurf attack 

 Buffer overflow 

 Heap overflow 

 Phishing 

 Cross-site scripting 

 CSRF 

 Cyber-attack 

 Format string attack 

 SQL injection 

 

 

 
 
 

   (ii). RELATED WORK 

This system proposed two methods of complexity which used 

for separating true and false observations. For that it proposed with 

signal print based Sybil attack detection of nodes without mutual trust in 

ad hoc networks. In this system hey developed a challenge-response 

protocol to detect attackers attempting to use motion to defeat the signal 

print-based Sybil defense. Using untrusted RSSI observation the 

proposed system can able to identify the Sybil attack. From those two 

methods first method of our proposed system selects the view indicting 

the most Sybil, limiting the total number of incorrect classifications. 

After that the second one method selects the true view, but works only 

when conforming nodes outnumber physical attacker nodes. In above 

said two methods a set of candidate views containing the true view with 

high probability is generated. The simulation results of this proposed 

system consumes more energy for verification process. 

Disadvantages 

 It consumes more energy 

 It used only RSSI values for trust verification. It could not 

produce efficient result. 
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(a) Nodes record their observed 

RSSIs of probes broadcast by 
neighbors. A and B have sent; C, 

D, and E are next. 

(b) RSSI observations are shared 

among all participants. Malicious 
nodes may lie about their observa- 

tions. 

(c) Each participant selects a subset 
of the observations to form signal- 
prints for Sybil detection. 

Fig. 2. The solution framework for signalprint-based Sybil detection in ad hoc networks. This paper fleshes out this 

concept into a safe and secure protocol, the Mason test. 

 

Li et al. use the unique mapping between identity and 
wireless channel to develop a channel-based authentica- 
tion scheme, using both pulse-type probing on the time 
domain and multi-tone probing on the frequency domain 
for channel estimation [22]. Although not originally 
designed for Sybil defenses, applying this technique to 
detect multiple identities sharing the same channel is 
straightforward. A primary drawback of this class of work 
is its restriction to specialized hardware or firmware, as 
commodity 802.11 devices do not expose detailed channel 
information to the driver and operating system. 

Faria et al. and Demirbas et al. independently devel- 
oped the signalprint technique, which greatly simplifies 
channel estimations while maintaining high Sybil detec- 
tion performance [16], [17]. Instead of measuring probe 
responses, a vector of RSSIs reported by multiple receivers 
at different locations is used to characterize the sender’s 
unique location and wireless environment. 

This class of work [16], [17], [18], [19] has two disadvan- 
tages. First they rely on trusted external measurements, 
e.g., RSSIs from trusted 802.11 access points, which are 
generally unavailable in open ad hoc networks. Our work 
builds on their ideas, but does not rely on any particular 
external device being trustworthy. Second, they restrict 
the attack model to stationary devices, even though 
attackers can easily use mobile devices. Our work detects 
and rejects moving nodes, instead of accepting them as 
non-Sybil. 

Lv et al. developed a method based on one-dimensional 
signalprints, which therefore does not rely on any external 
measurements [20]. However, it assumes, unrealistically, 
a uniform transmit power for all devices, including 
attacking devices. 

Bouassida et al. developed a trust-less method for 
vehicular area networks. Instead of relying on external 
measurements,  the  verifier  obtains  uncorrelated  mea- 

surements by changing its own reception locations. 
These measurements are used to locate the transmitter 
and detect abnormalities. It also rejects moving nodes 
with significant location changes over multiple measure- 
ments [21]. However, this technique relies on a predictable 
propagation model for location estimation that fails to 
capture the notorious variations of wireless channels. 
Our method does not assume any propagation model. 
Instead, we rely on the unpredictability of wireless signal 
propagation to defeat lying attackers. 

 
  (iii). PROBLEM FORMULATION AND 

BACKGROUND 

Our main goal of this paper is to design a new technique for 

detecting Sybil node in ad hoc network. The energy overhead 

for the Mason test data collection phase is the major problem 

since it consumes more energy for data collection. Then the 

existing system only uses RSSI values for comparing the 

untrusted neighboring nodes. The data collection phase 

typically will also increase the computation time in the 

existing system. The Mason test requires true RSSI 

observations from some neighbors but it does not provide 

exact values. 

 
  (iii.a). Problem Formulation 

Our goal is to extend signalprint-based Sybil  detec- 
tion methods to work without a priori trust in any 
observer, allowing any participant in an open wireless 
network to determine which of its one-hop neighbors 
are non-Sybil. The solution framework is illustrated in 
Figure 2 with five participants. We assume an arbitrary 
identity (or condition) starts the process.  Participants 
first take turns broadcasting a probe packet while all 
others record the observed RSSIs (Figure 2a). These 
observations are then shared, although malicious nodes 
may lie.  Figure  2b  shows  every participant after  this 
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exchange, with observations from all five 
participants. Finally each participant individually 
selects a (hopefully truthful) subset of observers for 
signalprint-based Sybil classification (Figure 2c). 

This paper presents our method for truthful subset 
selection and fleshes out this framework into a usable, 

 

 

 

To overcome the problems encountered in the existing system we 

propose a new system which can effectively identify Sybil nodes in ad 

hoc network. Sybil nodes are the nodes which are having more than one 

identity. In existing system they proposed with Mason test for 

identifying Sybil identity. It does not effectively identify the Sybil 

attack which increases computational time and energy consumption. For 

that our proposed system introducing Random Password Comparison 

(RPC) technique for identifying Sybil attacks in ad hoc network. The 

random Password Comparison technique uses an untrusted neighbor 

node’s ID, Password and time for comparison. If all these parameters do 

not match with a particular node that node is identified as a Sybil node 

or otherwise mark as anon Sybil node. The data transmission in this 

network can be done with the help of optimal path selection process. 

The proposed system uses Dynamic Source Routing (DSR) protocol for 

selecting path between the nodes. Since DSR consumes less delay and 

increases more throughput. Finally our simulation results prove that our 

proposed system reduces the energy consumption
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safe, and secure protocol. As with any system intended 
for real-world use, we had to carefully balance system 
complexity and potential security weaknesses. Section 10 
discusses these choices and related potential concerns. 

 

(iii.b). Attack Model 

We model attackers who operate commodity devices, but 
not specialized hardware. Commodity devices can be 
obtained in large scale by compromising those owned 
by normal network participants, a more practical attack 
vector than distributing specialized hardware at the same 
scale. Specifically, we assume attackers have the following 
capabilities and restrictions. 

1) Attackers may collude through arbitrary side chan- 
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Fig. 3. Sybils, A–B and D– 

E, occupy nearby slope-1 

lines. 
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Fig. 4. The classification 

threshold trades false pos- 

itives for negatives. 

nels. 
2) Attackers may accumulate information, e.g., RSSIs, 

across multiple rounds of the Mason test. 
3) Attackers have limited ability to predict the RSSI 

observations of other nodes, e.g., 7 dBm uncer- 
tainty (see Section 6), precluding fine-grained 
pre- characterization. 

4) Attackers can control transmit power for each 
packet, but not precisely or quickly steer the 
output in a desired direction, i.e., they are not 
equipped for antenna array-based beam-forming. 

5) Attackers can move their devices, but cannot quickly 
and precisely switch them between multiple 
posi- tions, e.g., they do not have high-speed, 
automated electromechanical control. 

One common denial-of-service (DOS) attack in wireless 
networks—jamming the channel—cannot be defended 
against by commodity devices. Thus, we do not defend 
against other more-complicated DOS attacks. However, 
note that ad hoc and delay-tolerant networks are much 
more resistant than infrastructured networks to such 
attacks, because a single attack can affect only a small 
portion of the network. Moreover, DOS attacks are less 
catastrophic to privacy and security than successful Sybil 
attacks. 

Notably, we assume attackers do not have  per- 
antenna control of MIMO (Multiple-Input and Multiple- 

at multiple observers for a single transmission. Ignoring 
noise, the vector of received powers (in logarithmic units, 
e.g., dBm) at multiple receivers for a given transmission 

can be modeled [13] as ~s = ~h + p~1, where p is the 

transmit power and ~h is the attenuation vector, a function 
of the channel amplitude response and the receiver 
characteristics. Transmissions from different locations 
have uncorrelated signalprints, as the channel responses 
are likely uncorrelated. Those from the same location, 
however, share a channel response and will be correlated. 
That is, for two transmissions a and b from the same 
location with transmit powers pa  and pb  = pa + c, the 
signalprints ~sb = ~h + pa~1 and ~sb = ~h + (pa + c)~1 are 
related as ~sb = ~sa + c~1. In other words, all observers see 
the same RSSI difference c for the two transmissions. 

This is illustrated geometrically in Figure 3 for a two- 
receiver signalprint. A and B are Sybil, while C is not. 
D and E are also Sybil, but due to noise the signalprints 
are not perfectly correlated. Instead, signalprints on lines 
closer than some threshold are taken to be Sybil. 

Definition. The signalprint distance d(~sa,~sb) between two 
signalprints ~sa and ~sb is the perpendicular distance 
between the slope-1 lines containing them. Letting 

w~ , ~sa − ~sb 

be the distance vector between the signalprints and 

Output) [23] devices. Such control would defeat the 
signalprint method (even with trusted observers), but 
is costly to implement. Commodity MIMO devices (e.g., 
802.11n adapters) do not expose this control to software 

~v⊥ , w~ 

be the vector rejection of w~ 

w~ · ~1 

−  
~ 

~1 

k1k2 

from ~1, then 

and thus are not suitable attack vectors. Distributing 
specialized MIMO-capable hardware over large portions 
of the network would be prohibitively expensive. 

We believe that the signalprint method can be extended 
to MIMO systems (see our technical report for an 
overview [24]), but doing so is beyond the scope of this 
work. Our focus is extending signalprint-based methods 
to ad hoc networks of commodity devices by removing 
the requirement for trusted observations. 

(iii.c). Review of Signalprints 

We briefly review the signalprint method. See prior work 
for details [15], [17]. A signalprint is a vector of RSSIs 

d(~sa,~sb) = k~v⊥k. 

Figure 4 shows the distance distributions  for  Sybil 
and non-Sybil identities using measurement data for 
commodity Android devices.3 The two distributions are 
well separated with small overlap, so the choice of 
classification threshold trades false positives for false 
negatives. A good threshold supports detection of  at 
least 99.9% of Sybils while accepting at least 95% of non- 
Sybils, as reported by previous research [15], [17] and 
confirmed by our own measurement (see Figure 13). 
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(iv). SYBIL CLASSIFICATION FROM     

    UNTRUSTED SIGNALPRINTS 

In this section we describe two methods to detect Sybil 
identities using untrusted RSSI observations. In both 
cases, a set of candidate views containing the true view 
(with high probability) is generated. The accepted view is 
chosen by a view selection policy. The first method selects 
the view indicting the most Sybils, limiting the total 
number of incorrect classifications. The second selects 
the true view, but works only when conforming nodes 
outnumber physical attacker nodes. 

 
  (iv.a). The Limited Power of Falsified  
                         Observations 

Our key observation is that falsified RSSI observations 
have limited  power.  Although  falsifying  observations 
to make Sybil identities look non-Sybil is easy, it is 
extremely difficult to make a non-Sybil look Sybil. To see 
this, recall that a pair of identities is considered Sybil 
only if all observers, including the initiator itself, report 
the same RSSI difference for the pair’s transmissions. 
Making true Sybils appear non-Sybil is easy, because 
randomly chosen values almost certainly fail to match 
the difference observed by the initiator. Making a non- 
Sybil look Sybil, however, requires learning the difference 
observed by the initiator, which is kept secret. Guessing 
is difficult due to the unpredictability of the wireless 
channels. Our methods rely on this difficulty. They are 
developed formally in the rest of this section. Quantitative 
characterizations are described in Section 6. To summa- 
rize, the success probability for a guessing attacker is less 
than 10−6  in common situations, i.e., when conforming 

nodes outnumber physical attackers by more than 1.53×. 

 
 (iv.b). Terminology 

Table  1  lists  all  the  terms  and  symbols  used  in  the 

Definition. An initiator is the node performing Sybil 
classification.5 It trusts its own RSSI observations, but no 
others. 

Definition. A receiver set, denoted by R, is a subset of 

identities (R ⊆ I) whose reported RSSI observations, 
combined with the initiator’s, form signalprints. Those 

with liars (R ӡ L 6= ∅) produce incorrect  

classifications and those with only truthtellers (R ⊆ T 
) produce the correct classification. 

Definition. A view, denoted by V , is a classification of 
identities as Sybil and non-Sybil. Those classified as Sybil 
(non-Sybil) are said to be Sybil (non-Sybil) under V and 
are denoted by the subset VS (VNS). A view V obtained 
from the signalprints of a receiver set R is generated by 

R, denoted by R 7→ V (read: R generates V ), and can 
be written V (R). Identities in R are considered non-Sybil, 

i.e., R ⊆ VNS(R). A true view, denoted by V , correctly 
labels all identities, i.e., V S = S and V NS = NS . Similarly, 

a false view, denoted by Vb , incorrectly labels some 

identities, i.e., VbS 6= S and VbNS 6= NS . 

Definition. Incorrectly labeling non-Sybil identities as 
Sybil is called collapsing. 

Assumption. To clearly illustrate the impact of intention- 
ally falsified observations, we first assume that true RSSI 
observations are noise-free and thus always generate the 
true view. In Section 4.7, we extend the method to handle 
real-world observations containing, for example, random 
noise and discretization error. 

 
  (iv.c). Approach Overview 

A general separation method does not exist, because 
different scenarios can lead to the same reported RSSI 

observations. To illustrate, consider identities I = {A|B} 
reporting observations such that 

development of the classification methods. I  is the set 
of participating identities. Each is either Sybil or non- 

R ⊆ A 7→ V 1 = {V 
1
 

R ⊆ B 7→ V 2 = {V 2
 

= A|V 1 = B} and 
2 

Sybil and reports either true or false4 RSSI observations, 
partitioning the identities by their Sybilness (sets S and 

NS = B|VS  = A} 

and two different scenarios x and y such that 

NS ) and the veracity of their reported observations (sets 
T  and L). in x, {T x

 = A|Lx
 = B} = I and 

S NS 

L 

T 

Truthtelling, non-Sybil identities are called conforming (set 
C). Liars and Sybil identities are called attacking (sets LS , 
LNS , and TS ). Our goal is to distinguish the S and NS 

partitions using the reported RSSI observations without 
first knowing the L and T partitions. 

 

in y, {Ty = B|Ly = A} = I. 

R  ⊆ T  7→ V , so V 1  and V 2  are both true views,  
the former in scenario x and the latter in scenario y. In 
other words, identities in A could be Sybil (as claimed by 
B) or those in B could be Sybil (as claimed by A). Either 
view could be correct; it depends on which group is  
lying. Consequently, no method can always choose the 
correct view. 

We instead develop two different approaches. The first 
method, the maximum Sybil policy, simply bounds the 
number of misclassified identities by selecting the view 
reporting the most Sybils. This selected view must indict 

 

LS LNS 

TS C 
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TABLE 1 

Definitions of Terms and Symbols 

 
 

 

Sets of Identities 

Definition Notes 

I all participating identities 

NS all non-Sybil identities 
I  = {NS |S}

 
S all Sybil identities 

T all truthful identities 
I = {T |L}

 
L all lying identities 

C all conforming, or truthful, non-Sybil, identities NS  = {C|LNS } 
LNS all lying, non-Sybil identities S = {TS |LS } 
TS all truthful, Sybil identities T = {C|TS } 

LS all lying, Sybil identities L = {LNS |LS } 

VNS all identities labeled non-Sybil by view V 
I = {VNS|VS}

 
VS all identities labeled Sybil by view V 

R (receiver set) identities used to form signalprints 
 

 

Views 
V (view) a Sybil–non-Sybil labeling of I 
V (true view) a view that correctly labels all identities V NS = NS and V S = S 

Vb (false view) a view that incorrectly labels some identities b 6= NS and 

Vb 

6= S 

V (R) the view generated by receiver set R 
 

 

Terms 
generates    (R 7→ V ) a receiver set generates a view 
initiator node performing the Sybil classification 
collapse classify a non-Sybil identity as Sybil 

 

 

 
at least as many as the true view, bounding the accepted 
Sybils by the number of collapsed conforming identities. 
Collapsing is difficult, limiting the number of incorrect 
classifications. 

The second method, the view consistency policy, allows 
complete separation, but requires that the following 
conditions be met. 

• All views correctly classify some conforming iden- 
tities (likely true because collapsing identities is 
difficult). 

• Conforming identities outnumber lying, non-Sybils 
(a major motivating factor for the Sybil attack). 

This approach follows from the idea that true observa- 
tions are trivially self-consistent, while lies often contra- 
dict themselves. We develop a notion of consistency that 
allows separation of true and false observations. 

 
 (iv.d). Maximum Sybil Policy: Select the View    

                  Claiming the Most Sybil Identities 

In this section, we prove that the maximum Sybil policy— 
selecting the view claiming the most Sybil identities— 
produces a classification with bounded error. The number 
of incorrectly-accepted Sybil identities is bounded by the 
number of collapsed conforming identities. 

Lemma 1. The selected view V claims at least as many Sybil 
identities as actually exist, i.e., |VS| ≥ |S|. 

Proof:  Since  the  true  view  V   claiming  |S| Sybils 
always exists, the selected view can claim no fewer. 

Proof: Claiming the minimum |S| Sybil  identities 
requires that each misclassified Sybil be compensated 
for by a collapsed non-Sybil identity. Formally, com- 

bining  |VS  Ӣ VNS| =  |S Ӣ NS | with  Lemma  1  yields 
|(VS Ӣ VNS) ӡ S| ≤ |(S Ӣ NS ) ӡ VS|. Removing the common 
VS ӡ S from both sides gives |VNS ӡ S| ≤ |VS ӡ NS |. 

Theorem  1  bounds  the  misclassifications  by  the  at- 

tacker’s collapsing power, |VS ӡ NS |. Although |VS ӡ NS | 

is small (see Section 6), one Sybil is still accepted for each 
conforming identity collapsed. The next few sections de- 
velop a second method that allows accurate classification, 
but only when conforming nodes outnumber attackers. 

                (iv.e). View Consistency Policy:  

Selecting V if LNS = ∅ Our view consistency policy 
stems from the intuition that lies told by those with 
incomplete information often contradict each other. It 
is introduced here using the following unrealistic 
assumption, which we remove in Section 4.6. 

Restriction 1. All liars are Sybil, i.e., LNS = ∅, and thus 
all non-Sybil identities are truthful, i.e., NS ⊆ T . 

Restriction 1 endows the true view with a useful 
property: all receiver sets comprising the non-Sybil 
identities under the true view will generate the true view. 
We formalize this notion of consistency as follows. 

Definition. A view is  view-consistent  if  and  only  if 
all receiver sets comprising a subset of the non-Sybil 
identities under that view generate the same view, i.e., VNS 

Theorem 1. The selected view V  misclassifies no more Sybil V is view-consistent iff ∀R ∈ 2 : R 7→ V . 

identities than it collapses conforming identities, i.e., |VNS ӡ 

S| ≤ |VS ӡ NS |. 

Lemma  2.  Under  Restriction  1,  the  true  view  is  view- 

consistent, i.e., ∀R ∈ 2V NS  : R 7→ V . 
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Proof: Consider the true view V . By definition, V NS = 

NS. By Restriction 1, NS ⊆ T and thus, V NS ⊆ T . ∀R ∈ 

2T  7→ V , so ∀R ∈ 2V NS  : R 7→ V . 
Were all false views not consistent, then consistency 

could be used to identify the true view. However, a fully 
omniscient attacker could theoretically generate a false, 
consistent view by collapsing all conforming identities. 
In practice, the difficulty of collapsing identities prevents 
this. We formalize this attacker limitation as follows. 

Condition 1. All receiver sets correctly classify at least 
one conforming identity, i.e., ∀R ∈ 2I : VNS(R) ӡ C 6= 

∅. 

Justification: Collapsing conforming identities re- 
quires knowing the hard-to-predict initiator’s RSSI ob- 
servations. Section 6 quantifies the probability that this 
condition holds. 

Lemma 3. Under Condition 1, a view generated by a receiver 

set containing a liar is not view-consistent, i.e., R ӡ L 6= 

∅ implies V (R) is not view-consistent. 

Proof: Consider such a receiver set R with R ӡ L 6= 

∅. By Condition 1, r , VNS(R) ӡ C is not empty and 

since r ⊆ C ⊆ T , r 7→ V . By the definition of a liar, V 

(R) 6= V and thus R is not consistent. 

Theorem 2. Under Restriction 1 and Condition 1 and 

assuming C  6= ∅, exactly one consistent view is  
generated across all receiver sets and that view is the true 
view. 

Proof: By Lemma 2 and Lemma 3, only the true view 
is consistent, so we need only show that at least one 

receiver set generates the true view. C 6= ∅ and  

thus R = C 7→ V . 
This result suggests a method to identify the true view— 

select the only consistent view. Restriction 1 does not hold 
in practice, so we develop methods to relax it. 

 
(iv.f). Achieving Consistency by Eliminating LNS 

Consider a scenario with some non-Sybil liars.  The 
true view would be consistent were the non-Sybil liars 

resulting view, when all correctly classified conforming 

identities are excluded, is not consistent, i.e., ∀R ∈ 2I : 
(|VNS(R) ӡ C| ≥ |LNS | + 1) Ӡ (∃Q ∈ 2VNS(R)\C  : V (Q) 

6= 
V (R)). Note that this implies Condition 2. 

Justification:   This  is  an  extension of  Condition  1. 
Section 6 quantifies the probability that it holds. 

Lemma 4. Under Condition 2 and Condition 3, the largest 

subset of I permitting a consistent view is I \ LNS. 

Proof: I \LNS permits a consistent view, per Lemma 2. 
Let ER , VbNS(R) ӡ C be the set of correctly classified 
conforming nodes for a lying receiver set R, i.e., RӡL 6= 

∅. I \ER is the largest subset possibly permitting a 
consistent view under R. By Condition 3, ∀R : |ER| ≥ 

|LNS | + 1. 

Theorem 3. Under Condition 2 and Condition 3, the largest 
subset of I permitting a consistent view permits just one 
consistent view, the true view. 

Proof: This follows directly from Lemma 4 and 
Theorem 2. 

In the next section, we extend the approach to handle 
the noise inherent to real-world signalprints. 

 
(iv.g). Extending Consistency to Handle Noise 

Noise prevents true signalprints from always generating 
the true view. Observing from prior work that the 
misclassifications are bounded  (e.g.,  more  than  99% 
of Sybils detected with fewer than 5% of conforming 
identities collapsed [15], [17]), we extend the notion of 
consistency as follows. 

Definition. Let γn be the maximum fraction6 of non-Sybil 
identities misclassified by a size-n receiver set. Prior work 

suggests γ4 = 0.05 is appropriate (for |C| > 20) [15], [17]. 

Definition. A view is γn-consistent if and only if all size-n 

receiver sets that are subsets of the non-Sybil identities 
under that view generate a γn-similar view. Two views 
V 1  and V 2  are γn-similar if and only if 

excluded from consideration. Similarly, a false view could 
 

|V 1 2  ^      
NS

 

NS   

 
 

NS ӡ VNS| 1 − 2γn |V 1 ӡ V 2 | 1 − 2γn 

be consistent were the correctly classified conforming 
identities excluded. If the latter outnumber the former, 

|V 1 2 
> 

NS \ VNS| γn 
|V 2 1 

> 

NS \ VNS| γn 

this yields a useful property: the consistent view over This statement captures the intuitive notion that V 1   and 

the largest subset of identities, i.e., that with the fewest 
excluded, is the true view, as we now formalize and 
prove. 

Condition 2. The number of conforming identities is 
strictly greater than the number of non-Sybil liars, i.e., 

|C| > |LNS |. 

Justification: This is assumed by networks whose 
protocols require a majority of the nodes to conform. In 
others, it may hold for economic reasons—deploying as 
many nodes as the conforming participants is expensive. 
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7→
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(1 − 2γn)|NS |. Each misclassifies at most γn  of the non- R1 , (i1, i0) ( i5 , i1, i0) ( i3 , i5, i1, i0) 

Sybil identities, so |V 1 \ V 2  | ≤ γn|NS | and similar for 
V 2 1 

NS \ VNS. The ratio of these bounds is the result. 
Substituting γ-consistency for pure consistency, Condi- 

tion 3 still holds with high (albeit different) probability, 
quantified in Section 6. An analogue of Theorem 3 
follows. 

Theorem 4. Under Condition 3, the γn-consistent view of 
the largest subset of I permitting such a view is γn-true. 

In Section 5 we describe an efficient algorithm to 
identify the largest subset permitting a γ-consistent view 
and thus the correct (up to errors expected due to 
signalprint noise) Sybil classification. 

 

    (v) EFFICIENT IMPLEMENTATION OF THE 

                     SELECTION POLICIES 

V (R1) , 

 

 

 

 

R|I| , 

 
V (R|I|) , 

 

 

 

 

 

 

 

(i|I|, i0) 

 
 
 
 
 
 
 

( i6 , i|I|, i0) 

 
 
 
 
 
 
 

( i3 , i6, i|I|, i0) 

Both the maximum Sybil and view consistency policies 
offer ways to select a view, either the one claiming the 
most Sybils or the largest one that is γn-true, but brute- 
force examination of all 2|I| receiver sets is infeasible. 

Instead, we describe O(|I|3) algorithms for both policies. 

In summary, both start by generating O(|I|) candidate 
views  (Algorithm  1).  For  the  maximum  Sybil  policy, 
the one claiming the most Sybil identities is trivially 
identified. For the view consistency policy, Algorithm 2 
is used to identify largest γn-consistent view. 

 
 

Algorithm 1 Choose the receiver sets to consider 

Require: i0 is the identity running the procedure 
Require: n is the desired receiver set size 

1: S ← ∅ 

2: for all i ∈ I do 
3: R ← {i0, i} 
4: for cnt = 3 → n do 

5: R ← R Ӣ {RandElement(VNS(R))} 
6: end for 

7: S ← S Ӣ {R} 
8:  end for 

9:  return S ⊲ with high probability, S contains a 
truthful receiver set 

 

 

 

(v.a) Candidate Receiver Set Selection 

The only requirement for candidate receiver set selection 
is that at least one of the candidates must be truthful. 

Algorithm 1 selects |I|, size-n (we suggest n = 4) receiver 
sets of which at least one is truthful with high probability. 
As illustrated in Figure 5, the algorithm starts with all 

Algorithm Progression 

Fig. 5. Illustration of Algorithm 1. All |I| size-2 receiver 
sets are increased to size-4 by iteratively adding a random 
identity from those labeled non-Sybil by the current set. 

With high probability, at least one of the final sets will 

contain only conforming identities. 

 
Figure 6 shows this probability as a function of the 

number of conforming identities (|C|) and the number of 

non-Sybil liars (|LNS |). We use size-4 signalprints (n = 4) 
and γ4 = 0.05, based on previous evaluation results [15], 
[17]. In the shaded areas, some required condition is 

not met. Recall that Algorithm 1 requires |C| > n, so 
that at least one size-n receiver set composed purely of 
conforming nodes can be formed. The view consistency 

policy requires |C| > |LNS | (Condition 2). 
The signalprint threshold for this process is chosen 

to eliminate (nearly) all false negatives, because  the 
goal is to minimize the malicious-to-conforming ratio; 
false positives are harmless during the generation of 
candidate views. The complexity of a straightforward 

implementation is O(|I|3). Section 10 further discusses 
the runtime. 

 
(v.b) Finding the Largest γn-Consistent View 

Given the |I| candidate receiver sets, the next task is 
identifying the one generating a γn-true view, which, 
pursuant to Theorem 4, is that permitting the largest 
subset of I to be γn-consistent. Checking consistency by |VNS| 

|I| size-2 receiver sets (lines 2–3) and builds each up to examining all 2 receiver sets is infeasible, so we make 3 

the full size-n by iteratively (line 4) adding a randomly 
selected identity from those indicated to be conforming 

at the prior lower dimensionality (line 5). At least |C| of 
the initial size-2 receiver sets are conforming and after 
increasing to size-n, at least one is still conforming with 
high probability: 

several observations leading to the O(|I| ) Algorithm 2. 
For each candidate receiver set (line 2), we determine 
how many identities must be excluded for the view to be 
γn-consistent (lines 3–17). The view excluding the fewest 
is γn-true and the desired classification (line 22). 

The crux of the algorithm is lines 3–17, which use the 
following  observations  to  efficiently  determine  which 

n−1 

1 − 1 − 
Y

 
m=2 

(1 − γm) · |C| − (m − 1) 

|LNS | + (1 − γm) · |C| − (m − 1) 

!|C| 
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Fig. 6. Contours of probability that at least one of the re- 

ceiver sets from Algorithm 1 is conforming.8 In the shaded 
areas, conditions required by either the consistency policy 
or by Algorithm 1 are not met. 

 
 
 
 

 

Algorithm 2 Find receiver set permitting the largest γn- 
consistent subset   

Require: S is the set of receivers sets generated by Algo- 
rithm 1 

Require: VNS(R) for each R  ∈ {size-2 receiver sets} com- 
puted by Algorithm 1 

Require: s is the initiator running the algorithm 
1: (C, Rmax) ← (∞, null) 
2:  for all R ∈ S do 
3: Compute RSSI ratio for each Sybil set in VS(R) 
4: c ← 0 
5: for all i ∈ VNS(R) do 
6: e ← 0 
7:  n ← number of identities whose RSSI ratios re- 

ported by i do not match that for R 

identities must be excluded. 

1) Adding an identity to a receiver set can change 
the view in one direction only—an identity can go 
from Sybil to non-Sybil, but not vice versa—because 
uncorrelated RSSI vectors cannot become correlated 
by increasing the dimension.9 

2) For identities a and b, RӢ{a} 7→ V (R) and RӢ{b} 

7→ V (R) implies R Ӣ {a, b} 7→ V (R) because a and b 
must have the same RSSI ratios for the Sybils as R. 

From these observations, we determine the excluded 
identities by computing, for each identity in VS(R), the 
RSSI ratio with an arbitrary sibling (line 3) and comparing 
against those reported by potential non-Sybils in VNS(R) 

(line 7). If the number not matching is too large (line 8), 
the view is not γn-consistent and the identity is excluded 
(line 15). It is also excluded if the receiver set consisting 
of just itself and the initiator is not γ2-similar to R (line 
11). 

 
 (v.c) Runtime in the Absence of Liars 

In a typical situation with no liars, the consistency 

algorithm can detect the Sybils in O(|I|2) time. Since 
all identities are truthful, any chosen receiver set will 
be γn-consistent with no exclusions—clearly the largest 

possible—and thus the other |I| − 1 also-truthful receiver 
sets need not be checked. With lying attackers present, 

the overall runtime is O(|I|3), as each algorithm takes 
O(|I|3) time. 

 

(vi)  CLASSIFICATION PERFORMANCE AGAINST 

OPTIMAL ATTACKERS 

Both view selection policies depend directly on the 
unpredictability of RSSIs, because collapsing identities 
requires knowing the observations of the initiator, as 
explained in Section 4.1. An intelligent attacker can 
attempt educated guesses, resulting in some successful 
collapses. In this section, we evaluate the two selection 
policies against the optimal attackers, as defined in 
Sections 6.2 and 6.3. 

8: if |VNS (R)|+n 

9: e ← 1 

10: end if 

1−2γn 
γn (vi.a) RSSI Unpredictability 

Accurately guessing RSSIs is difficult because the wireless 
11: if V (R) and V ({i, s}) are not γ2-similar then 

12: e ← 1 

 

 

 

17: end for 
18: if c < C then 
19: (C, Rmax) ← (c, R) ⊲ new largest γ-consistent 

subset found 
20: end if 
21:  end for 

22:  return Rmax 

channel varies significantly with small displacements in 
location and orientation (spatial variation) and environmen- 
tal changes over time (temporal variation) [13], [25]. Pre- 
characterization could account for spatial variation, but 
would be prohibitively expensive at the needed spatial 

and orientation granularity (6 cm [26] and 3◦ for our test 
devices). 

We empirically determined the RSSI variation for 
human-carried smartphones by deploying experimental 
phones to eleven graduate students in two adjacent offices 
and  measuring  pairwise  RSSIs  for  fifteen  hours.  The 

 
2. This is not true for low dimension receiver sets severely affected 

by noise, but is for the size-(n > 4) sets considered here. 

 

n = 4 
γ4 = 0 
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13: end if 
 

14: if e = 1 then 
15: c ← c + 1 ⊲ exclude i 
16: end if  
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Fig. 7. Distribution of RSSI variations in real-world deploy- 

ment. 

observed distribution of deviations,10 shown in Figure 7, 
is roughly normal with a standard deviation of 7.3 dBm, 
in line with other real-world measurements for spatial 
and orientation variations (4–12 dBm and 5.3 dBm [13]). 
We use this distribution to model the attacker uncertainty 
of RSSIs, corresponding to an attacker who accumulates 
knowledge of pairwise RSSIs by observing values re- 
ported in past tests. 

 
 (vi.b) Optimal Attacker Strategy—

Maximum Sybil Policy 

Theorem 1 shows that the performance of the maxi- 
mum Sybil policy  is  inversely  related  to  the  number 
of collapsed non-Sybil identities. Therefore, the optimal 
attacker tries to collapse as many as possible. We give 
two observations about this goal. 

3) More distinct guesses increase the probability of 
success, so an optimal attacker partitions its (mostly 
Sybil) identities, with each group making a different 
guess. 

4) Smaller group size increases the number of groups, 
but decreases the probability that the group is 
considered—recall that Algorithm 1 generates only 

|I| of the possible 2|I| candidate receiver sets. 

Consequently, there is an optimal group size that max- 
imizes the total number of groups (guesses) produced 
by Algorithm 1, which we obtained via Monte Carlo 
simulations. We model the initiator’s RSSI observation as 
a random vector whose elements are drawn i.i.d. from 
the Gaussian distribution in Figure 7. Given the total 
number of guesses, the best choices are the vectors with 
the highest joint probabilities. The performance against 
this strategy is discussed in Section 6.4. 

 
(vi.c) Optimal Attacker Strategy—View Consistency   

                      Policy 

The view consistency policy depends on Condition 3 
holding, i.e., all consistent views must correctly classify 

 
3. For each pair of transceivers, we subtracted the mean of all their 

measurements to get the deviations and took the distribution of the 
pairwise deviations. 

at least |LNS |+ 1 conforming identities. In this section we 
quantify the probability that it holds against an optimal 
attacker. To break Condition 3, an attacker must generate 

a consistent view that collapses at least |C| − |LNS | 
conforming identities. We give three observations about 
the optimal attacker strategy for this goal. 

1) Collapsing |C| − |LNS | identities is easiest with 

larger |LNS |. Thus, the optimal attacker uses only 
one physical node to claim Sybils—the others just 
lie. 

2) For a particular false view to be consistent, all 
supposedly non-Sybil identities must indict the 
same identities, e.g., have the same RSSI guesses 
for the collapsed conforming identities. The optimal 
attacker must divide its (mostly Sybil) identities into 
groups, each using a different set of guesses. 

3) More groups increases the probability of success, but 
decreases the number of Sybils actually accepted, 
as each group is smaller. 

We assume the optimal attacker  wishes  to  maximize 
the probability of success and thus uses minimum-sized 
groups (three identities, for size-4 signalprints). 

For each group, the attacker must guess RSSI values 
for the conforming identities with the goal of collapsing 

at least s , |C| − |LNS | of them. There are |C| such sets, 
and the optimal attacker guesses values that maximize the 
probability of at least one (across all groups) being correct. 

The first group is easy; the |C| guesses are simply the most 
likely values, i.e., the expected values for the conforming 
identities’ RSSIs, under the uncertainty distribution. 

For the next (and subsequent) groups, the optimal 
attacker should pick the next most likely RSSI values for 

each of the |C| sets. However, the sets share elements 

(only |C| RSSIs are actually guessed), so the attacker 
must determine the most probable values of the sets 
that are compatible. For example, the second most likely 
values for the set (a, b) are (−78 dBm, −49 dBm), and the 
second most likely values for the set (a, c) are (−82 dBm, 
−54 dBm). These two  sets  of  values  are  incompatible, 
as one cannot simultaneously guess both −78 dBm and 
−82 dBm for node a. 

The above problem is non-trivial, but an attacker could 
conceivably solve it. In order to model the strongest 
possible attack, we assume that all sets of values are 
compatible. For example, we assume one group can 
simultaneously guess (−78 dBm, −49 dBm)  for  the  set 
(a, b), and (−82 dBm, −54 dBm) for the set (a, c). Any 
realizable attack would use an additional group to try 
both guesses. Thus, this assumption models an attack 
that, with the same set of groups, has a higher success 
probability than any realizable attack. This leads to a 
conservative lower bound on the probability that the 
attacker fails—any feasible, optimal strategy is less likely 
to succeed. 

Figure 8 shows contours of this lower bound on the 
probability that Condition 3 holds as a function of |C| 

and |LNS |, obtained via Monte Carlo simulations of the 
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Fig. 9. The final Sybil ratio, i.e., fraction of accepted 

identities that are Sybil, produced by the maximum Sybil 

policy against an optimal attacker strategy. 

 
100 

Fig. 8. Contours of a lower bound on the probability that 

Condition 3 holds under an optimal attacker strategy with 

the attacker’s knowledge of RSSIs modeled as a normal 

distribution with standard deviation 7.3 dBm. 

super-optimal attacker. The initiator’s RSSI observation 
is modeled as a random vector, whose elements are 
drawn i.i.d. from the Gaussian distribution in Figure 7. 

The |C| ≤ |LNS | region is shaded, because the view 
consistency policy fails there (recall Condition 2). When 
the conforming nodes outnumber the attacker nodes by 

at least 1.5× —the expected case in real networks—the 
condition holds with very high probability. In practice, it 
will hold with even higher probability, as this is a lower 
bound. 

 
 (vi.d) Performance Comparison of Both Policies 

We use Monte Carlo simulations to compare the perfor- 
mance of the two policies against the optimal attackers, 
quantified as the final Sybil ratio, the fraction of accepted 
identities that are Sybil. We model the attacker’s knowl- 
edge of the initiator’s RSSIs as a random vector whose 
elements are drawn i.i.d. from the Gaussian distribution 
in Figure 7, which conservatively assumes fine-grained 
temporal and spatial characterization (see Section 6.1). 
We expect real-world attackers to have less knowledge, 
leading to even better classification performance. 

Our procedure for generating candidate receiver sets 
(Algorithm 1) works best when conforming nodes out- 
number physical attackers. This condition should nor- 
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Fig. 10. Contours showing the final Sybil ratio for the view 

consistency policy against an optimal attacker strategy. 

The dashed line corresponds to situations where this policy 

has the same performance as the maximum Sybil policy. 
 

elimination of most Sybil identities (92%–99%). This 
behavior is due to the ease of guessing low-dimension 
random vectors. 

Figure 10 shows the final Sybil ratio of the consistency 

policy. Again, the |C| ≤ |LNS | region is shaded as the 
policy simply fails in this case. Performance increases 
rapidly with the ratio of conforming nodes to physical 

attackers—recall the attacker needs to collapse |C|−|LNS | 
identities to break Condition 3. For example, the final 

mally  hold  in  real-world  networks  (it  is  the  major Sybil ratio drops below 10−6  when 
|C|

 ≥ 1.6. As 
motivation for a Sybil attack), so for both policies, we 
report results assuming that it does. 

Figure 9 graphs the final Sybil ratio of the maximum 

the collapse rate is usually below 0.2 (see Figure 9 when 
|C| > 10), we observe good performance when |C| − 

|LNS | ≥ 0.2|C| (below the 0.05 contour). The dashed line 
Sybil policy, which roughly corresponds to the ratio of (roughly 

|C|
 = 1.2) indicates the situations where 

collapsed conforming nodes ( 
|VSӡNS | 

). The performance 
does not depend on the number of physical attackers. 
The Sybil ratio decreases to 0.05-0.2 when |C| > 10. 
When |C| < 10, the Sybil ratio is high (0.2–0.5), despite 

both policies perform equally. Below it, the consistency 
policy performs better than the maximum Sybil policy 
and above it does worse. 

The view consistency policy is superior when conform- 

#
 o

f 
N

o
n

-S
y
b

il 
L

ia
rs

 +
 1

 (
|L

N
S
 | 
+

 1
) 

#
 o

f 
P

h
y
s
ic

a
l 
A

tt
a

c
k
e

rs
 (

|L
N

S
 | 
+

 1
) 



 

12  

 

 

 

14 
 

12 
 

10 
 

8 
 

6 
 

4 
 

2 
0 50 100 150 200 

# of Identities (|I|) 

Fig. 11. Contours showing the response time (in ms, 

99th percentile) to precisely switch between two positions 
required to defeat the challenge-response moving node 
detection. 

ing nodes are expected to outnumber attacker nodes by at 

least 1.2×, the common case in urban environments. The 
maximum Sybil policy remains viable when the number 
of physical attackers is comparable to (or even larger 
than) that of the conforming nodes. We suggest users 
of the Mason test consider their application knowledge 
when choosing a policy. 

 

(viii). DETECTING MOVING ATTACKERS 

A mobile attacker can  defeat  signalprint  comparison 
by changing locations or orientations between trans- 
missions to associate distinct signalprints with each 
Sybil identity.  Instead  of  restricting  the  attack  model 
to only stationary devices, we protect against moving 
attacks by detecting moving nodes. Moving nodes are 
treated as non-conforming, in essence, and will not be 
able to participate in network protocols until stationary 
enough to be tested for Sybilness again. Fortunately, in 
the networks we consider, most conforming nodes (e.g., 
human-carried smartphones and laptops) are stationary 
over most short time-spans (1–2 min), due to human 
mobility habits. Thus, multiple transmissions should have 
the same signalprints [15]. From this observation, we 
develop a protocol to detect moving attackers. 

Again, the lack of trusted observations is troublesome. 
Instead of comparing signalprints, we compare the initia- 
tor’s observations: all transmissions from a conforming 
node should have the same RSSI. As shown in Section 9, 
this simple criterion yields acceptable detection. 

The protocol collection phase (Figure 2a) is extended 
to request multiple probe packets (e.g., 14) from each 
identity in a pseudo-random order (see Section 8.1). 
During the classification phase (Figure 2c) each partic- 
ipant  rejects  any  identity  with  a  large  RSSI  variation 

across its transmissions (specifically, a standard deviation 
larger than 2.5 dBm). In essence, an attacker is challenged 
to quickly and precisely switch between the multiple 
positions associated with its Sybil identities (6 cm location 
precision according to coherence length theory [26] and 

3◦ orientation precision according to our measurements). 
Figure 11 plots the required response time for an 

attacker to pass the challenge. Random sequences of 
probe requests are generated via Monte Carlo simulations 
and the required response time is calculated accordingly. 
Given human reaction times [27], reliably mounting such 
an attack would require specialized hardware—precise 
electromechanical control or beam steering antenna 
arrays—that is outside our attack model and substantially 
more expensive to deploy than compromised commodity 
devices. 
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All stationary neighbors respond with their identities 
via HELLO-I messages, each ACKed by the initiator. 
Unacknowledged HELLO-Is are re-transmitted. The pro- 
cess terminates when the channel is idle—indicating all 
HELLO-I’s were received and ACKed. If the channel 
does not go idle before a timeout (e.g., 15 seconds), the 
protocol aborts because an attacker may be selectively 
jamming some HELLO-Is. The protocol also aborts if too 
many identities join, e.g., 400. 

Phase II: Randomized Broadcast Request: The second 
phase is the challenge-response protocol to collect RSSI 
observations for motion detection and Sybil classification. 

1 

0.8 

0.6 

0.4 

0.2 

0 

 

 
0 1 2 3 4 5 6 7 8 9  10 

Maximum Acceleration (m/s2) 

First, each identity contributes a (difficult to predict) 
random value;11 all are hashed together to produce a seed 
to generate the random sequence of broadcast requests 
issued by the initiator. Specifically, it sends a TRANSMIT 
message to  each participant in the  random sequence, 
who must quickly broadcast a signed HELLO-II, e.g., 
within 10 ms in our implementation.12 Each participant 
records the RSSIs of the HELLO-II messages it hears. 
Some identities will not hear each other; this is acceptable 
because the initiator needs observations from only three 

other conforming identities. |I| × s requests are issued, 
where s is large enough to ensure a short minimum 
duration between consecutive requests for any two pairs 
of nodes,  e.g.,  14  in  our  tests.  An  identity  that  fails 
to respond in time might be an attacker attempting to 
change physical position and is rejected. 

In some applications, it might be desirable to meet 
the additional requirement that attackers be unaware 
of their positions in the challenge-response sequence 
until challenged. This could be achieved by allowing 
the initiator to use a self-generated random sequence 
that cannot be verified by other participants. However, if 
this were done only the initiator would be able to safely 
use the test results. 

Phase III: RSSI Observations Report. In the third 
phase, the RSSI observations are shared. First, each iden- 
tity broadcasts a hash of its observations. Then the actual 
values are shared. Those not matching the respective 
hash are rejected, preventing attackers from using the 
reported values to fabricate plausible observations. The 
same mechanism from Phase 1 is used to detect selective 
jamming. 

 
(viii.b). Sybil Classification 

Each participant performs Sybil classification individually. 
First, the identity verifies that  its  observations  were 
not potentially predictable from those reported in prior 
rounds, possibly violating Condition 3. Correlation in 
RSSI values between observations decreases with motion 

 

 

Fig. 12. RSSI correlation as a function of the maximum 

device acceleration between observations. 

between observations, as shown by our experiments (Fig- 
ure 12). Thus, a node only performs Sybil classification if 
it has strong evidence that the current observations are 
uncorrelated with prior ones,13 i.e., it has observed an 
acceleration of at least 2 m/s2. 

Classification is a simple application of the methods 
of Section 7 and Section 5. Each identity with an RSSI 
variance across its multiple broadcasts higher than a 
threshold is rejected. Then, Algorithm 1 and Algorithm 2 
are used to identify a γ-true Sybil classification over the 
remaining, stationary identities. 

 
 (ix). PROTOTYPE AND EVALUATION 

We implemented the Mason test as a Linux kernel module 
and tested its performance on HTC Magic Android 
smartphones in various operating environments. It sits 
directly above the 802.11 link layer, responding to re- 
quests in interrupt context, to minimize response latency 
for the REQUEST–HELLO-II sequence (12 ms roundtrip 
time on our hardware). The classification algorithms are 
implemented in Python. Unlike the described protocol, 
mobile conforming nodes participated in all tests (i.e., 
nodes did not monitor their own motion and decline 
to participate when moving), giving us data to tune the 
motion filter and characterize the impact of node motion 
on the classifier performance. 

The goal of this section is to evaluate the overall 
performance of our system in normal settings, which 
is mainly dependent on the wireless environment. We 
therefore evaluated the Mason test in four different 
environments. 

Office I  Eleven participants in two adjacent offices for 
fifteen hours. 

Office II Eleven participants in two adjacent offices in a 
different building for one hour, to determine whether 
performance varies across similar, but non-identical 
environments. 

Cafeteria  Eleven  participants  in  a  crowded  cafeteria 
during lunch. This was a rapidly-changing wireless 
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TABLE 2 

Thresholds for Signalprint Comparison and Motion 

Filtering 

 
 

Name Threshold (dBm) 

Signalprint Distance dimension-2 0.85 

dimension-3 3.6 

dimension-4 1.2 

 

1 
 

 
0.8 

 
 

0.6 

RSSI Standard Deviation 2.5 
0.4 

TABLE 3 

Classification Performance 0.2 

Environment     Sensitivity (%)     Specificity (%) 
 
 

0 
0 0.2 0.4 0.6 0.8 1 

False Positive Rate (1 - Specificity) 
 
 

 

 

environment due to frequent motion of the cafeteria 
patrons. 

Outdoor Eleven participants meeting in a cold, open, 
grassy courtyard for one hour, capturing the outdoor 
environment. Participants moved frequently to stay 
warm. 

In each environment, we conducted multiple trials with 

one Sybil attacker14  generating 4, 20, 40, and 160 Sybil 
identities. The ratio of conforming to attacking nodes is 
held constant, as it does not affect performance (assuming 
at least one true view is generated by Algorithm 1). The 
gathered traces were split into testing and training sets. 

We do not study the system performance under col- 
lapsing attacks here, as it also depends on the number of 
conforming and attacking nodes, and we have too few 
experimental devices to meaningfully vary those counts. 
In Section 6 we independently evaluate the performance 
against such attacks, using Monte Carlo simulations to 

vary both numbers from 5 to 200. 

 
 (ix.a.). Selection and Robustness of Thresholds 

The training data were used to determine good motion 
filter and signalprint distance thresholds, shown in 
Table 2. 

The motion filter threshold was chosen such that at 
least 95% of the conforming participants (averaged over 
all training rounds) in the low-motion Office I environ- 
ment would pass. This policy ensures that conforming 
smartphones, which are usually left mostly stationary, e.g., 
on desks, in purses, or in the pockets of seated people, 
will usually pass the test. Devices exhibiting more motion 
(i.e., a standard deviation of RSSIs at the initiator larger 
than 2.5 dBm)—as would be expected from an attacker 
trying to defeat signalprint detection—will be rejected. 

 
4. As discussed in Section 4 and Section 6, additional physical nodes 

are best used as lying, non-Sybils. 

Fig. 13. ROC curve showing the classification performance 

of signalprint comparison in different environments for 

varying distance thresholds. Only identities that passed 

the motion filter are considered. The knees of the curves 

all correspond to the same thresholds, suggesting that the 

same value can be used in all locations. 

The signalprint distance thresholds were chosen by 
evaluating the signalprint classification performance at 
various possible values. Figure 13 shows the ROC curves 
for size-4 receiver sets (a “positive” is an identity classi- 
fied as Sybil). Note that the true positive and false positive 
rates consider only identities that passed the motion 
filter, in order to isolate the effects of the signalprint 
distance threshold. The curves show that a good threshold 
has performance in line with prior work [15], [17], as 
expected. 

In all environments, the knees of the curves correspond 
to the same thresholds, suggesting that  these  values 
can be used in general, across environments. A possible 
explanation is that despite environment differences, the 
signalprint distance distributions for stationary Sybil 
siblings are identical. All results in this paper use these 
same thresholds, shown in Table 2. 

 
  (ix.b). Classification Performance 

The performance of the full Mason test—motion filtering 
and signalprint comparison—is detailed by the confusion 
matrices in Figure 14. Note that we count all rejected 
identities, including both Sybil and moving identities, as 
Sybil. Many tests were conducted in each environment, so 
average percentages are shown instead of absolute counts. 
To evaluate the performance, we consider two standard 
classification metrics derived from these matrices, sensitiv- 
ity (percentage of Sybil identities correctly identified) and 
specificity (percentage of conforming identities correctly 
identified). 

Note that 100% sensitivity is not necessary. Most 
protocols that would use Mason require a majority of 
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Fig. 14. Confusion matrices detailing the classifier performance in the four environments. S is Sybil and C is conforming. 

Multiple tests were run in each environment, so mean percentages are shown instead of absolute counts. 
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Fig. 15. Relative frequencies of the three causes of false 

positives. 
 

the participants to be conforming. The total number of 
identities is limited (e.g., to 400), so rejecting most of the 
Sybils and accepting most of the conforming identities is 
sufficient to meet this requirement. 

Table 3 shows the performance for all four environ- 
ments. The Mason test performs best in the low-motion 
indoor environments, with over 99.5% sensitivity and 
over 85% specificity. The sensitivity in the cafeteria 
environment is just 91.4%, likely due to the rapid and 
frequent changes in the wireless environment resulting 
from the motion of cafeteria patrons. In the outdoor 
environment, with all participants (including attackers) 
moving, the sensitivity is 95.9%, and the specificity is 
61.1% with all the false rejections caused by motion. 

The outdoor experiment is an extreme case where we 
pay the cost of rejecting moving conforming nodes to 
defeat motion attacks. The result is acceptable because our 
goal is to produce a set of non-Sybil identities to be used 
safely by other protocols: accepting a swarm of moving 
Sybil identities is much worse than temporarily rejecting 
some conforming nodes that are currently moving. 

An identity  is  classified  as  Sybil  for  three  reasons: 
it has similar signalprints to another, the initiator has 
too few RSSI  reports  to  form  a  signalprint,  or  it  is 
in motion. Figure 15 shows the relative prevalence of 
these three causes for falsely rejecting conforming nodes. 
Not surprisingly, the first cause—collapsing—is rare, 
occurring only in the first office environment. Missing 
RSSI reports is an issue only in the environments with 
significant obstructions (the indoor offices) and accounts 

 

for about half of these false rejections. In the open 
cafeteria and outdoor environments, all false rejections 
are due to participant motion. 

 
   (ix.c). Overhead Evaluation 

Figures 16a and 16b show the runtime and energy 
overhead for the Mason test collection phase, with the 
stacked bars separating the costs by sub-phase. The 
protocol runs infrequently (once every hour is often 
sufficient), so runtimes of 10–90 seconds are acceptable. 
Likewise, smartphone energy consumption is acceptable, 
with the extreme 18 J consumption for 400 identities 
representing 0.01% of the 17.500 J capacity of a typical 
smartphone battery. 

Figure 16c show the classification phase overheads for 
2–100 identities. Classification consumes much less energy 
than collection, so its overhead is also acceptable. For 
more than 100 participants, costs become excessive due 
to the O(n3) scaling behavior.15 Limiting participation to 
100 identities may be necessary for energy-constrained 
devices,  but  will  generally  not  reduce  performance 
because having 100 non-Sybil, one-hop neighbors is rare. 

The periodic accelerometer sampling used to measure 
motion between Mason test rounds consumes 5.2% of 
battery capacity in an 18 h period of use before recharg- 
ing. 

 

   (x). DISCUSSION 

Sybil classification from untrusted observations is difficult 
and the Mason test is not a silver bullet. Not requiring 
trusted observations is a significant improvement, but 
the test’s limitations must be carefully considered before 
deployment. As with any system intended for real-world 
use, some decisions try to balance system complexity and 
potential security weaknesses. In this section, we discuss 
these trade-offs, limitations, and related concerns. 
High Computation Time: The collection phase time is 
governed by the 802.11b-induced 12 ms per packet latency, 
and the classification runtime grows quickly with the 

number of identities, O(|I|3). Although typically fast 
(e.g., <5 s for 5–10 nodes), the Mason test is slower in 
high density areas (e.g., 40 s for 100 nodes). However, 

 
5. A native C implementation might scale to 300–400 identities. 
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Fig. 16. Overhead of the collection and classification phases. The stacked bars partition the cost among the participant 

collection (HELLO I), RSSI measurement (HELLO II), and RSSI observation exchange (RSST) steps. 

 
 

it should be  run infrequently, e.g.,  once or twice  per 
hour. Topologies change slowly (most people change 
locations infrequently), and many  protocols  requiring 
Sybil resistance can handle the lag—they need only know 
a subset of the current non-Sybil neighbors. 

Easy Denial-of-Service Attack: An attacker can force 
the protocol to abort by creating many identities or 
jamming transmissions from the conforming identities. 
We cannot on commodity 802.11 devices solve another 
denial-of-service attack—simply jamming the channel— 
so defending against these more-complicated variants is 
ultimately useless. Most locations will at most times be 
free of such attackers—the Mason test provides a way 
to verify this condition, reject any Sybils, and let other 
protocols operate knowing they are Sybil-free. 

Requires Several Conforming Neighbors: The Mason 
test requires true RSSI observations from some neighbors 
(i.e., 3) and is easily defeated otherwise. Although a 
detailed treatment is beyond the  scope  of  this  paper, 
we do note that protocols incorporating the Mason test 
can mitigate this risk by (a) a priori estimation of the 
distribution of the number of conforming neighbors and 
(b) careful composition of results from multiple rounds 
to bound the failure probability. 

Limit On Total Identities: This limit (e.g., 400) is un- 
fortunately necessary to detect when conforming nodes 
are being selectively jammed, while  still  keeping  the 
test duration short enough that most conforming nodes 
remain stationary. We believe that most wireless networks 
have typical node degrees well below 400. 

Messages Must Be Signed: Packets sent during the 
collection phase are signed, which can be very slow with 
public key schemes. However, this is easily mitigated 
by (a) pre-signing the packets to keep the delay off the 
critical path or (b) using faster secret-key-based schemes. 
Pre-Characterization Reveals RSSIs: An attacker could 
theoretically improve its collapsing probability by pre- 
characterizing the wireless environment. We believe 
such attacks are impractical because the required spa- 
tial granularity is about 6 cm, the device orientation is 
still unknown, and environmental changes (e.g., people 
moving) reduces the usefulness of prior characterization. 

 

Prior Rounds Reveal RSSI Information: The protocol 
defends against this. Conforming nodes do not perform 
classification if their RSSI observations are correlated with 
the prior rounds (see Section 8.2). 
High False Positive Rates: With the motion filter, the 
false positive rate can be high, e.g., 20% of conforming 
identities rejected in some environments.  We  believe 
this is acceptable because most protocols requiring Sybil 
resistance need only a subset of honest identities. For 
example, if for reliability some data is to be spread among 
multiple neighbors, it is acceptable to spread it among a 
subset chosen from 80%, rather than all, of the non-Sybils. 

 
 
(xi). CONCLUSION 

Detection of different attacks plays important research area in 

wireless networks especially in delay tolerant networks. Particularly in this 

paper we proposed with the detection of Sybil attack. For that here we 

proposed Random Password Comparison (RPC) technique to identify the 

Sybil node in our proposed wireless networks. Our proposed system checks 

authentication with nodes ID, Time and password. If all these parameters are 

match with a particular node mark that node as a non Sybil node or 

otherwise mark it as a Sybil node. Finally our simulation result proves that 

our proposed system can efficiently utilizes energy and reduces the 

computational time. 
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