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Abstract-Big data is a broad term for data sets so large or complex that traditional data processing applications which are 
inadequate. There are several challenges include analysis, capture data curation, search, sharing, storage, transfer, 
visualization, and information privacy. Range aggregate queries are defined as that to apply a certain aggregate functions 
on all tuples within given query ranges. It is a challenging problem to quickly obtain range-aggregate query in the Big 
Data environments. To overcome these challenges, we develop an approach called FASTRAQ which divides the big data 
into independent partitions with balanced partitioning algorithms and generate a local estimation sketch for each partition. 
When a query request arrives, FASTRAQ obtains the result directly by the use of local estimation in all partitions. 
FASTRAQ has O (m) time complexity for data updates and O (N/ (P*B)) time complexity for range aggregate queries.  
The experimental results demonstrate the FASTRAQ provides range-aggregate query results within a time period two 
orders of magnitude lower than that of Hive, while the relative error is less than 3 percent within the given confidence 
interval.     
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1 INTRODUCTION  

 Big data is a broad term for data sets so large or 

complex that traditional data processing applications are 

inadequate. Challenges include analysis, capture, data 

curation, search, sharing, storage, transfer, visualization, 

and information privacy. The term often refers simply to the 

use of predictive analytics or other certain advanced methods 

to extract value from data, and seldom to a particular size of 

data set. Accuracy in big data may lead to more confident 

decision making. And better decisions can mean greater 

operational efficiency, cost reduction and reduced risk. 

Analysis of data sets can find new correlations, to 

"spot business trends, prevent diseases, and combat crime and 

so on”. Scientists, business executives, practitioners of media 

and advertising and governments alike regularly meet 

difficulties with large data sets in areas including Internet 

search, finance and business informatics. Scientists encounter 

limitations in e-Science work, 

including meteorology, genomics,
 

connectomics, complex 

physics simulations,
 

and biological and environmental 

research. 

Data sets grow in size in part because they are 

increasingly being gathered by cheap and numerous 

information-sensing mobile devices, aerial (remote sensing), 

software logs, cameras, microphones, radio-frequency 

identification (RFID) readers, and wireless sensor 

networks. The world's technological per-capita capacity to 

store information has roughly doubled every 40 months since 

the 1980s; as of 2012, every day 2.5 exabytes (2.5×10
18

) of 

data were created;
 

The challenge for large enterprises is 

determining who should own big data initiatives that straddle 

the entire organization. 

Big data usually includes data sets with sizes beyond 

the ability of commonly used software tools to capture, curate, 

manage, and process data within a tolerable elapsed time.
 
Big 

data "size" is a constantly moving target, as of 2012 ranging 

from a few dozen terabytes to many petabytes of data. Big 

data is a set of techniques and technologies that require new 

forms of integration to uncover large hidden values from large 

datasets that are diverse, complex, and of a massive scale. 

Analysis of data is a process of inspecting, cleaning, 

transforming, and modeling data with the goal of discovering 

useful information, suggesting conclusions, and supporting 

decision-making. Data analysis has multiple facets and 

approaches, encompassing diverse techniques under a variety 

of names, in different business, science, and social science 

domains. 

The partition problem is the task of deciding whether 

a given multiset S of positive integers can be partitioned into 

two subsets S1 and S2 such that the sum of the numbers 

in S1 equals the sum of the numbers in S2. Although the 

partition problem is NP-complete, there is a pseudo-

polynomial time dynamic programming solution, and there 

are heuristics that solve the problem in many instances, either 
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optimally or approximately. For this reason, it has been called 

"The Easiest Hard Problem". There is an optimization 

version of the partition problem, which is to partition the 

multiset S into two subsets S1, S2 such that the difference 

between the sum of elements in S1 and the sum of elements 

in S2 is minimized. The optimization version is NP-hard. 

Histograms are a concise and flexible way to 

construct summary structures for large data sets. They have 

attracted a lot of attention in database research due to their 

utility in many areas, including query optimization, and 

approximate query answering. They are also a basic tool for 

data visualization and analysis. 

A histogram is a display of statistical information 

that uses rectangles to show the frequency of data items in 

successive numerical intervals of equal size. In the most 

common form of histogram, the independent variable is 

plotted along the horizontal axis and the dependent variable is 

plotted along the vertical axis. The data appears as colored or 

shaded rectangles of variable area. 

Range searching and its variants have been studied 

extensively in the computational geometry and database 

communities because of their many important applications. 

Range-aggregate queries, such as range-COUNT, SUM and 

MAX, are some of the most commonly used versions of range 

searching in database applications. Since many such 

applications involve massive amounts of data stored in 

external memory, it is important to consider external memory 

(or I/O-efficient) structures for fundamental range-searching 

problems. In this paper, we develop an external memory data 

structure for answering orthogonal range-COUNT, SUM and 

MAX queries. Note that from these we automatically get 

some other aggregates like AVE and MIN. 

Good histograms partition data sets into \smooth" 

buckets with close-to-uniform internal tuples density. In other 

words, the frequency variance of the tuples enclosed by such 

buckets is minimized, leading to accurate selectivity 

estimations for range queries. Unfortunately, current 

multidimensional histogram techniques do not always manage 

to produce close-to-uniform partitions of the data sets, as we 

discuss next. Later it reports a thorough experimental 

evaluation of these techniques that complements the 

discussion in this section.  

A partition of a multidimensional data domain results 

in a set of disjoint rectangular buckets that cover all the points 

in the domain and assigns to each bucket some aggregated 

information, usually the number of tuples enclosed. The 

choice of rectangular buckets is justified by two main reasons: 

First, rectangular buckets make it easy and efficient to 

intersect each bucket and a given range query to estimate 

selectivity. Second, rectangular buckets can be represented 

concisely, which allows a large number of buckets to be 

stored using the given budget constraints 

 In this paper, we present an approach called 

FASTRAQ, a fast approach to the range aggregate queries in 

the big data environments. This approach first divides big data 

into independent partitions based on the balanced partition 

algorithm, and also generates a local estimation for those 

partitions. When an range aggregate query arrives FASTRAQ 

obtains the results directly by summarizing local estimates. 

A histogram is a display of statistical information 

that uses rectangles to show the frequency of data items in 

successive numerical intervals of equal size. In the most 

common form of histogram, the independent variable is 

plotted along the horizontal axis and the dependent variable is 

plotted along the vertical axis. The data appears as colored or 

shaded rectangles of variable area. 

Range searching and its variants have been studied 

extensively in the computational geometry and database 

communities because of their many important applications. 

Range-aggregate queries, such as range-COUNT, SUM and 

MAX, are some of the most commonly used versions of range 

searching in database applications. Since many such 

applications involve massive amounts of data stored in 

external memory, it is important to consider external memory 

(or I/O-efficient) structures for fundamental range-searching 

problems. In this paper, we develop an external memory data 

structure for answering orthogonal range-COUNT, SUM and 

MAX queries. Note that from these we automatically get 

some other aggregates like AVE and MIN. 

Good histograms partition data sets into \smooth" 

buckets with close-to-uniform internal tuples density. In other 

words, the frequency variance of the tuples enclosed by such 

buckets is minimized, leading to accurate selectivity 

estimations for range queries. Unfortunately, current 

multidimensional histogram techniques do not always manage 

to produce close-to-uniform partitions of the data sets, as we 

discuss next. Later it reports a thorough experimental 

evaluation of these techniques that complements the 

discussion in this section.  

A partition of a multidimensional data domain results in a set 
of disjoint rectangular buckets that cover all the points in the 
domain and assigns to each bucket some aggregated 
information, usually the number of tuples enclosed. The 
choice of rectangular buckets is justified by two main reasons: 
First, rectangular buckets make it easy and efficient



 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. An example of the column-family schema. 

 

FastRAQ first divides big data into independent partitions with a 
balanced partitioning algorithm, and then generates a local 
estimation sketch for each partition. When a range-aggregate 
query request arrives, FastRAQ obtains the result directly by 
summarizing local estimates from all partitions. 
 

The balanced partitioning algorithm works with a strati-fied 

sampling model. It divides all data into different groups with 

regard to their attribute values of interest, and further separates 

each group into multiple partitions according to the current data 

distributions and the number of available servers. The algorithm 

can bound the sample errors in each partition, and can balance the 
number of records adaptively among servers when the data 

distribution and/or the num-ber of servers changes. 

 

The estimation sketch is a new type of multi-dimensional 

histogram that is built according to learned data distribu-tions. 
Our multi-dimensional histogram can measure the quality of 

tuples distributions more accurately and can sup-port accurate 
multi-dimensional cardinality queries. It can maintain nearly 

equivalent frequencies for different values within each histogram 
bucket, even if the frequency distri-butions in different 

dimensions vary significantly.  
FastRAQN has Oð1Þ time complexity for data updates and 

OðP _BÞ time complexity for ad-hoc range-aggregate queries, 

where N is the number of distinct tuples in all dimensions, P is 

the number of partitions, and B is the number of buck-ets in a 

histogram. Furthermore, it produces negligible vol-ume of index 

data in big data environments. 
 

We implement the FastRAQ approach on the Linux plat-form, 
and evaluate its performance with about 10 billions data records. 
Experimental results demonstrate that Fas-tRAQ provides range-
aggregate query results within a time period two orders of 
magnitude lower than that of Hive, while the relative error is less 
than 3 percent within the given confidence interval. 
 

 

2 OVERVIEW OF THE FASTRAQ APPROACH  
2.1 Problem Statement 
 
We consider the range-aggregate problem in big data envi-
ronments, where data sets are stored in distributed servers. An 
aggregate function operates on selected ranges, which are 
contiguous on multiple domains of the attribute values. In 
FastRAQ, the attribute values can be numeric or alpha-betic. One 
example of the range-aggregate problem is shown as follows: 

Select exp(AggColumn), other ColName 
where li1 < ColNamei < li2 opr  
lj1 < ColNamej < lj2 opr 

. . . ; 
 

In the above query, exp is an aggregate function such as SUM 
or COUNT; AggColumn is the dimension of the aggre-gate 
 
operation; li1 < ColNamei < li2 and lj1 < ColNamej < lj2 are the 
dimensions of ranges queries; opr is a logical oper-ator including 
AND and OR logical operations. In the fol-lowing discussion, 
AggColumn is called Aggregation-Column,  
ColNamei and ColNamej are called Index-Columns. 
 

The cost of distributed range-aggregate queries primarily 

includes two parts. i.e., the cost of network communication and 

the cost of local files scanning. The first cost is produced by data 

transmission and synchronization for aggregate operations when 

the selected files are stored in different servers. The second cost 

is produced by scanning local files to search the selected tuples. 

When the size of a data set increases continuously, the two types 

of cost will also increase dramatically. Only when the two types 

of cost are minimized, can we obtain faster final range-aggregate 

queries results in big data environments. 
 
 

2.2  Key Idea 
 
To generate a local request result, we design a balanced par-tition 
algorithm which works with stratified sampling model. In each 
partition, we maintain a sample for values of the aggregation-
column and a multi-dimensional histogram for values of the 
index-columns. When a range-aggregate query request arrives, 
the local result is the product of the sample and an estimated 
cardinality from the histogram. This reduces the two types of cost 
simultaneously. It is for- 
mulated as 

PM
 Count

i
 _ Sample

i
, where M is the 

number i¼1  
of partitions, Counti is the estimated cardinality of the que-ried  
ranges, and Samplei is the sample for values of aggre-gation-
column in each partition. 
 

Column-family schema for FastRAQ, which includes three 

types of column-families related to range-aggregate queries. They 

are aggregation column-family, index column-fam-ily, and 

default column-family. The aggregation column-family includes 

an aggregation-column, the index column-family includes 

multiple index-columns, and the default column-family includes 

other columns for further extensions. A SQL-like DDL and DML 

can be defined easily from the schema. An example of column-

family schema and SQL-like range-aggregate query statement is 

shown in Fig. 1. 
 

In FastRAQ, we divide numerical value space of an 
aggregation-column into different groups, and maintain an 

estimation sketch in each group to limit relative estimated errors 

of range-aggregate paradigm. When a new record is coming, it is 

first sent onto a partition in the light of current data distributions 

and the number of available servers. In each partition, the sample 

and the histogram are updated respectively by the attribute values 

of the incoming record. 
 

When a query request arrives, it is delivered into each 
partition. We first build cardinality estimator (CE) for the queried 

range from the histogram in each partition. Then we calculate the 
estimate value in each partition, which is the product of the 

sample and the estimated cardinality from the estimator. The final 
return for the request is the sum of all the local estimates. A brief 

FastRAQ framework 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. The FastRAQ framework. 

independently and more efficiently. Stratified sampling is a 

method of sampling from independent groups of a popula-tion, 

and selecting sample in each group to improve the rep-

resentativeness of the sample by reducing sampling error. We 

build our partitioning algorithm based on the idea of stratified 

sampling to make the maximum relative error under a threshold 

in each partition. At the same time, the sum of the local result 

from each partition can also achieve satisfied accuracy for any 

ad-hoc range-aggregate queries. We first divide the value of 

numerical space into different groups and subdivide each group 

into different partitions according to the number of available 

servers. The partition algorithm can be expressed as follows for 

data sets R: 
 

 
PartitioningðRÞ ¼ ðg; pÞ ¼ ðVe; random½1; Vr&Þ; (1) 

 
is shown in Fig. 2, and a multi-dimensional range-
aggregate query process is presented in Algorithm 1. 

 

Algorithm 1. FastRAQuering(Q) 
 
Input: Q; 
 

Q: select sum(AggColumn) otherColname where 
li1<ColNamei<li2 opr lj1<ColNamej<lj2. 
Output: S;  

S: range-aggregate query result. 
 

1: Deliver the request Q to all partitions;  
2: for each partitioni in partitions do  
3: Compute  the  cardinality estimator  of range  li1  <  

ColNamei < li2 from the local histogram, and let CEi be 
the estimator of the ith dimensions;  

4: Compute  the  cardinality estimator  of range  lj1  <  
ColNamej < lj2 from the local histogram, and let CEj be 
the estimator of the jth dimensions; 

 
5: Merge the estimators CEi and CEj by the logical operator 

Opr, and compute the merged cardinality  
estimator CEmerged;  

6: Counti  _hðCEmergedÞ; 
==_h is a function of cardinality estimation. 

 
7: Compute the sample for AggColumn, and let Samplei be 

the sample;  
8: SUMi  Counti _ Samplei;  

==SUMi is a local range-aggregate query result; 
9: end for 

10: Set the approximate answering of FastRAQ as S. Let 
P
  M 

S i¼1 SUMi,  where  M is the number of  
partitions; 

11: return S. 
 

 

3  DISTRIBUTED PARTITIONING ALGORITHM 
 
Partitioning is a process of assigning each record in a large table 

to a smaller table based on the value of a particular field in a 
record. It has been used in data center networks to improve 

manageability and availability of big data [13]. The partitioning 
step has become a key determinant in data analysis to boost the 

query processing performance [14]. All of these works enable 
each partition to be processed 

 
where the number of a partition p in a group g, is a random 
 
number in ½1; Vr&, and Ve is a group identifier (GID) for the 
group g. 
 

The stratified sampling is a method to subdivide the numerical 
value space into independent intervals with a batch of logarithm 
functions, and each interval stands for a group. When the number 
of logarithm functions is fixed, an arbitrary natural integer N can 

be mapped into a unique group g. The grouping model of 
stratified sampling is shown in Algorithm 2. 
 

 

Algorithm 2. Grouping(N) 
 
Input: N; 
 

N: an arbitrary numerical value (N 
> 0). Output: Ve;  

Ve: the group Identifier 

(GID). 1: k logN; 
2: if ðk ¼¼ 0Þ then 

V 
3: e < 0; 0; 0 > ;  
4: Set the interval length of group Ve as [0,1];  
5: return Ve; 
6: else 

7: if ðN _ 2
k

 ¼¼ 0Þ then 
8: Ve   < k; 0; 0>; 

9: Set the interval length of group Ve as ½2
k

; 2
k

 þ 1&; 

10: return Ve; 
11: else  

12: l  log N _ 2
k

;  

13: if ðl ¼¼ 0 k N _ 2
k

 _ 2
l
 ¼¼ 0Þ then 

14: Ve < k; l; 0>;  
15: Set  the interval  length of group  Ve  as 

 ½2
k

 þ 2
l
; 2

k
 þ 2

l 
þ 1&; 

16: return Ve; 

17: elsek   l 
18: m  log N _ 2  _ 2 ; 
19: Setmthe intervalk lengthl of group Ve as ½2

k
 þ 2

l
 

þ2  ; 2  þ 2 
mþ1

 _ 1&;þ2 

20: return Ve. 

21: end if  
22: end if  
23: end if  



TABLE 1 
The Maximum Number of Groups in Different Value Spaces 

 

 numeric value space 10 20 30 
 ½1; 2 _ 1& ½1; 2 _ 1& ½1; 2 _ 1&   

 interval number 145 1775 8190 
     

 

 

Algorithm 2 also presents the calculations for lengths of the 
grouping model. For example, when GID equals to < 0; 0; 0 > 
the length of the group is [0,1]. When GID equals to < k; l; m > ,  

k ¼6 0, l ¼6 0, m ¼6 0, the length of the group is ½2
k

 þ 2
l
 þ 2

m
; 2

k
 þ 

2
l
 þ 2

mþ1
 _ 1&. Other processes of cal-culations are 

 

shown in Steps 5 and 15 of Algorithm 2. In Algorithm 2, it uses 

triple logarithmic functions to divide numerical space into 

independent groups. This can achieve better tradeoff between 

sampling errors (see Section 5) and the number of groups. The 

instances for the number of groups in different value spaces are 

listed in Table 1. For instance, 30itwill produce 8;190 groups at 

most in the value space ½1; 2 _ 1&, and it is acceptable in many 

applications. Of course, one can increase the number of logarithm 

func-tions to reduce the sample error in each group, but it will 

pro-duce a greater number of groups. 

 

To make data balanced on each server, the partition algorithm 
subdivides each group into a number of parti-tions according to 
the current data distributions and sends each partition onto one 

 

server. Let Vr represent the maxi-mum number of partitions in 
 

each group. The value of Vr is related to the current data 
distributions and the number of available servers at the same 

 

time. We design Algo-rithm 3 to compute the value of Vr for the 
current system. The key idea of Algorithm 3 is to calculate an 

 

average ratio of records b0 for all groups, and then set the value 
 

of Vr according to b0 and the current number of records in each 
group. 

 

Algorithm 3. Numbering(G, dr) 
 

Input: G; 
 

G ¼ f < GIDi; nri >; 1 _ i _ M}; 
 

dr: the maximum number of partitions for a 
group; GIDi: the group identifier of group gi; 

 

nri: the number of records in gi; 
M: the number of groups. 

Output: VP ;  

VP : the partition vectors set, and 
 

VP fVpjj1 _ j _ Mg. 

1:  Compute an average ratio of record for all groups,  

i.e., b0 i ¼1 nri=M;    
V number of servers dr V  

2:rMax P  _, and rMin 1;  

3: for all ðgi 2 GÞ do  
4: if ðgi:nri < b0Þ then  
5: Vpi  < gi:GID; VrMin >; 

6: else 
 

 

Vpi    < gi:GID; MINf 
nri  

7: b0  ; VrMaxg > ; 

8: end if  
9: VP VP þ Vpi;  

10: end for 
11: return VP . 

 
The number of partitions should be kept under some 

threshold in an applicable system. Some groups may hold 

the majority of input records, and it will make 
nri

 
be a very 

b0  
large number. We use the factor dr to bound the maximum 
number of partitions in each group. As shown in step 7 of 
 

Algorithm 3, the Vr locates in the interval [VrMin, VrMax], where 
 

the VrMax and VrMin are the maximum and minimum number of 
partitions for each group. 
 

In big data environments, a partition is a unit for load 

balancing and local range-aggregate queries. FastRAQ uses the 

vectors set VP ¼ fVpi : < Ve; Vr > j1 _ i _ Mg to build partitions 

for all the incoming records, where M indicates the number of 

groups. In each partition, a dynamic sample is calculated from the 

current loaded records. Currently, FastRAQ uses a mean value of 

aggregation-column as the sample, which is Sample ¼ 

SUM=Counter, where SUM is sum of values from aggregation-

column, and Counter is the number of records in the current 

partition. A detailed balanced partition algorithm is shown in 

Algorithm 4. 

 

Algorithm 4. Partitioning(R,VP ) 
 

Input: (R,VP );  

R: an input record;  

VP : the partition vector set.  

Output: PID;  

PID: a partition identifier for partition p. 
 

1: Parse the input record R into different column-fami-lies by 
the defined schema;  

2: Compute the GID with its value from aggregation-column 
by algorithm 2;  

3: Get the partition vector Vpi from VP with the GID, and let  
Vpi ¼ < GID; Vr >; 

4: Set target partition identifier, 
 

PID < GID; random½1; Vpi:Vr& >; 5: Build the  
sample in partition PID, such as: 
 

counterPID þ 1; 
is  the  number  of  record;  

sumPID þ N; 

//N is value of aggregation attribute from 
R; 

 

SamplePID sumk;l;m;r=counterPID; 

6: RID HashðPID; counterPIDÞ; 

//RID is the unique record identifier for R; 
7: Send R to partition PID;  
8: return PID. 
 

 

The input record R is sent to a partition represented by PID. 
The PID is generated from its value of aggregation-column. 
When the data distribution or the number of avail-able severs 
 

changes, it just needs to modify the Vr in corre-sponding partition 

vector Vp, and the newly incoming records will be adaptively 

mapped into a partition in [1,Vr] randomly. 

 

 

4  RANGE CARDINALITY ESTIMATION 
 

4.1  Clustering Based Histogram 
 

We  measure  the  data  distributions by clustering values  of all 

 

==counterPID 

sumPID 

 
counterPID 



our histogram. A feature vector of clustering is expressed as ftag; 
vectorg, where tag is the attribute value, and vector is the 

frequency for the tag occurring in each dimension. For example, 
the feature {tag=ad, vector=<10,2>} indicates that the value of 
ad occurs in the first index column 10 times and the second index 
column 2 times. After extracting the fea-ture vectors from learned 
 
data set, it will produce vectors set. Let it be f < tagi; vectori > j0 

< i < Ng. We use the common K-Means clustering method to 
analyze the vectors set and produce K clusters. A unique 

ClusterID is assigned to each cluster. We construct a list of key-

value pairs from the result of K clusters. The key-value pairs are 

in the format of < tag; ClusterID >. We sort the key-value pairs 

by tag in alphabetical order. The buckets in the histogram are 

built from the sorted pairs. The key idea is to merge the pairs 

with the same ClusterIDs into the same bucket. If some tag 

occurring frequency is significantly different from others, its 

ClassID is different after the K-Means clus-tering, and it will be 
put into an independent bucket in the histogram. 
 
 

 

Algorithm 5. Building(F ) 
 
Input: F ;  

F : learning data set.  
Output: P ;  

P : a bucket boundary list. 
 

1: Scan the learning data source F , and generate the fre- 
 

quency features set f< tagi; vectori > j0 < i < Ng, where 
tag is the attributes value, vector is the fre-quency 
occurring on each dimension; 

2: Cluster the features set 
 

f< tagi ; vectori > j0 < i <N g by K-Means 
clustering method and produce K clusters 
fClusterij1 _ i _ Kg;  

3: Assign a unique ClusterID to each cluster, and scan 
the  K clusters to  generate  key-value  pairs list 

 
f < tagq ; ClusterID > j1 _ ClusterID _ K g; 

4: Sort the key-value pairs list by tag in alphabetical order, 
 

and the sorted sequence is S ¼ fSi : < tagi; clusterID > 
j1 _ i _ Ng;  

5: for all Si  in S do  
6: if ðCureent ClusterID ¼¼ Si:ClusterIDÞ then 

7: i þ þ; continue; 
8: else  
9: Add Si:tagi into P ;  

10: CureentClusterID  Si:clusterID;  
11: i þ þ; 
12: end if  
13: end for  
14: Add MIN VALUE, MAX VALUE into P ;  
15: return P . 
 

 

Algorithm 5 produces buckets boundary P for the histo-gram, and 

P ¼ fpij0 _ i _ ng, where pi is the value of tag from the feature 

vector. The values spreads for buckets in the histogram are ½p0; 

p1Þ; ½p1; p2Þ; . . . ; ½pn_1; pnÞ respectively, and p0  
¼ _1, pn ¼ þ1. In Algorithm 5, we let MIN VALUE be _1, and  
MAX VALUE be þ1.  

 
 
 
 
 
 
 
 

 
Fig. 3. A typical RC-Tree structure. 

 

 

4.2  Range Cardinality Queries 
 
FastRAQ supports multi-dimensional ranges queries, each of 

which may include multiple buckets of the histogram. FastRAQ 

uses a unique RecordID (RID, as step 6 in Algo-rithm 4) to 

predict whether the cardinalities obtained from different buckets 

belonging to the same record. We adopt the HyperLogLogPlus 

algorithm to estimate the cardinality in the queried range [15]. 

We serialize the hash bits to bytes array in each bucket as a 

cardinality estimator. HyperLogLog-Plus uses 64 bits hash 

function instead of 32 bits in Hyper-LogLog to improve the data-

scale and estimated accuracy in big data environments. Readers 

can further refer to the references [15], [16] to learn about 

cardinality estimation mechanism. We establish a hierarchical 

tree structure to implement the histogram. A typical index 

structure is shown in Fig. 3. We term it range cardinality tree 

(RC-Tree). 
 

RC-Tree includes three types of nodes, which are root node, 
internal nodes, and leaf nodes. The root node or an internal node 
points to its children nodes and keeps their values of spreads, 
 
such as ½pi; pjÞ. A leaf node is for one bucket in the histogram. 
The parameters in a leaf node are values of spreads for each 
 
bucket, for example ½pi; piþ1Þ, the estimator CE of each bucket, 
and the bucket data file pointer. The leaf node only keeps these 
statistical informa-tion, and tuples values are stored in bucket 
data files. Because the buckets are independent of each other, the 
RC-Tree structure and its construction process are similar to the 
B+ Tree. We do not discuss the details further in this paper. 

 
In order to improve throughput of RC-Tree, a hash table for 

newly incoming data is introduced for incremental updating 

process. The hash table consists of multiple nodes which are 

identical to the RC-Tree‘s leaves nodes. If a new record is 
coming, it first writes into the hash table, creates node if it does 

not exist, and then appends the tuples values into a temporary 

data file. When the number of nodes in the hash table reaches a 

threshold, the hash table flushes nodes into the RC-Tree, and 

appends the temporary files to the for-mal bucket data files. The 

incremental updating process will greatly improve the throughput 

of RC-Tree in big data envi-ronments. Algorithm 6 discusses the 

incremental updating process in RC-Tree. 

 

The RC-Tree supports to search a leaf node randomly and 

sequentially. For example, when we query range ðli1; li2Þ 

cardinality, we first locate the first leaf node using random 

searching method. Let the first node be Nodei, such that li1 _ 

Nodei:pi, where ½pi; piþ1Þ 2 Nodei. Then we find other nodes 

sequentially from Nodei, until the last node is found. Let the last 

node be Nodej, and li2 _ Nodej:pjþ1, where ½pj; pjþ1Þ 2 Nodej. 

All the CEs from Nodei to Nodej 



 
are merged into a single CE with binary format, and the 

cardinality of range ½pi; pjþ1Þ is obtained from the merged CE. 

If the two edge nodes Nodei, Nodej do not fully cover the 

queried range (li1, li2), that is to say, li1 < pi and/or li2 > pjþ1. 

There are two methods to compute the remainder edge range 

cardinality. The first is to scan the bucket data file to build the 

remainder edge cardinality estimator. The second is to use the 

estimators from edge nodes, which are Nodei_1 and/or Nodejþ1, 

to directly obtain the remainder range cardinality. The second 

method is simpler and does not need to scan the bucket data files, 

but it will bring extra errors into the estimate. It is believed that if 

the edge bucket accounts for smaller cardinality ratio in the final 

queried results, the second method can quickly produce satisfied 

estimation. 

 

Algorithm 6. Updating(R, P ) 
 
Input: (R, P );  

R: an input record;  
P : bucket boundary key set.  

Output: T ;  
T : the RC-Tree. 

 
1: for all columns  in  R do 

 
2: Parse value of index-columns into key-value pairs, in 

format of < IndexValue; RID >;  
3: Search in the buckets spreads P , and get the target bucket 

 
½pi; pjÞ, such that IndexValue 2 ½pi; pjÞ 

 
4: Search in hash table and get the target node NodeH , which include bucket 

 
range ½pi; pjÞ;  

5: NodeH :RCNodeH :RC þ 1; 
6: Set  RID into 

NodeH :CE; 
7: Write IndexValue into a temporary bucket data file;  

8: if ðhash  table node  number > thresholdÞ then 
9: for all nodes in  hash  table do 

10: Flush the nodes of hash table into T ; 
 
11: Append the temporary data files into the for-mal bucket 

data files. 
12: end for  
13: end if  
14: end for  
15: return T . 

 
To query cached data in hash table, the process is the same as 

Algorithm 7 to obtain cardinality estimator of the cached data, 
 
and then we merge the estimator into CEmerge to compute the 
final cardinality estimation. If the request includes multiple 
ranges, the queried ranges are connected by AND or OR logical 
operators. The logical OR operation is simple. We obtain 
estimators for each queried ranges respectively, and then merge 

 the estimators into a single estimator to produce the final 
ðb_aÞ

2 estimate. The logical AND operation is relatively complex. 
12 Currently, FastRAQ uses  

  

 T S 
exclusive-inclusive principle for the logical AND operation, which is jAj jBj ¼ jAj þ jBj _ jAj    jBj. 

When the size of  

 T  
jjAj jBjj=MINjAj; jBj is large enough, the exclusive-inclu-sive 
principle can produce a satisfied accuracy estimate. There are 

 

also some discussions about howTto get a better cardinality 
estimation when the size of jjAj jBjj=MINjAj; jBj is small [17]. 

Algorithm 7. Range cardinality query algorithm 
 
Input: (Q, T , h0);  

Q : select distinct count(*) where li1 < ColName < 
li2; T : the RC-Tree;  
h0: the edge range cardinality ratio. 

Output: R;  
R: the range cardinality queried result. 

 
1: According to the queried range ðli1; li2Þ, locate the first 

node by ColName in RC-Tree T randomly, and let the 

searched node be Nodei, where li1 < pi and  
½pi; piþ1Þ 2 

Nodei; 2: m i;  
3: while ðli2 > pmþ1Þ do 
4: Merge Nodem. CE into cardinality estimator 

 CE ; 
 merge 

5: m++;  
6: end while  

7: if ð 
_hðNode :CEÞ 

i_1 _ h0Þ then 

h_ðCEmergeÞ 

8: Merge  Nodei_1.CE  into  cardinality estimator 

CE ; 
merge  

9: else 
 
10: Scan bucket data file of Nodei_1 to compute the exact 

cardinality CEi_1;  
11: Merge CEi_1 into cardinality estimator CEmerge; 12: 
end if  
13: if ð

_hðNodejþ1:CEÞ
 
_
 h0Þ then 

h_ðCEmergeÞ 

14: Merge Nodejþ1. CE into cardinality estimator 

CE ;  
merge  

15: else 
 
16: Scan bucket data file of Nodejþ1 to compute the exact 

cardinality CEjþ1; 
17: Merge CEjþ1 into cardinality estimator CEmerge; 
18: end if  
19: R  _hðCEmergeÞ; 
20: return R. 

 

5  ANALYSIS OF RELATIVE ERRORS 
 
FastRAQ uses approximate answering approaches, such as 
sampling, histogram, and cardinality estimation etc., to improve 

the performance of range-aggregate queries. We use relative error 
as a statistical tool for accuracy analysis. Relative error is widely 

used in an approximate answering system. Also, it is easy to 
compute the relative errors of combined estimate variables in a 

distributed environment for FastRAQ. 

 
In this section, we analyze the estimated relative error and the 

confidence interval of final range-aggregate query result. 

 
In our work, the relative error is defined as follows: 

 

 jvariabletrue _   

 variableestj ; (2) 

 variabletrue   

where  variabletrue  is  the  true  value of a variable, and  
variableest is an estimate of the variable variabletrue. Equa-tion 
(3) is usually used as an acceptable substitute for the analysis of 



  , 

jvariabletrue _ variableestj : (3) 

variableest   
 

D is used as a notation to represent relative error of a 
given variable. Let Y be the exact range-aggregate result, 

b 

and Y be estimated variable of Y . Their relative errors are 

DY and DY
b
 respectively. Let S be the local range-aggregate  

tition. We present Theorem 1 to discuss DS in each partition. 
Theorem 1. D 

b
 is an unbiased estimation of D in big data 

S S environments. 

 

Proof: According to Algorithm 3, the range-aggregate query  
S 

b 

_ (4) ¼  
S Count  Sample; 

 
where Count is estimated range cardinality obtained  
from the histogram, Sample is a sample of values of aggregation-
column in the queried partition. The exact 

P where  X  is a selected tuple in the queried  

partition. If the n¼1 j 

range-aggregate result S is expressed as S ¼ X , 

j 

 
estimators of two edge-buckets are produced by scan-ning 
bucket data files, they do not lead to extra errors of 

b ¼ 1 
P
n  

S 
X 

S n  Avg Avgn j¼1   j  
Suppose the selected tuples randomly distribute in the queried 
partition, and Avg approaches to Sample when the number of 
selected tuples is large enough. According  

   DS  expressed next: 
    b     

to Eq. (4), the expectation of can be  Count __: (5) 
    _ _  

 b  b _   _  

    _ _ 

 Suppose the buckets of histogram are  independent of 
each other, then Count is an unbiased estimation of n in big 

data environments [16], that is to say, 
Count

n ¼ 1, thus  
EðDSÞ=0.       ut 

b  

expressed as follows: 
     

We       

b         

and it is  s 2 ðDSampleÞ þ s 2 ðDCountÞ; (6) 

where s ð b Þ is variance of relative error of sample 
for values of  aggregation-column in a partition, and 

s
2

ðDCount Þ is variance of relative error for cardinality esti-  
mation in a histogram. We suppose that DSample obeys a 
uniform distribution, and it can be expressed as Uða; bÞ, where 
a and b are the minimum and maximum values of the 
distribution. The variance of uniform distribution is 
 

. We omit the minus relative error in the succeeding 
 
discussions. According to Algorithm 2, a and b can be com-puted 
in each group within stratified sampling model, and  

b 

the standard variances (sðD Þ) in different numeric value 

S  
spaces are listed in Table 2.  

The variance of estimated cardinality has been discussed in 
 
the work of [16], and the sðDCountÞ asymptotically 

 
TABLE 2 

The Standard Variance in Different Numeric Space 
 

numeric value space ½1; 2 
10 20 30 

 _ 1& ½1; 2 _ 1& ½1; 2 _ 1&   

maximum relative error(b) 0.07 0.07 0.07 
 b    

the standard variance( ð Þ)  0.02 0.02 0.02 

equals to 
1:04

ffiffiffi, where m is the number of register bit array. If 
p 

  m 

we set ¼ 2 
12 b 

 , sðD  Þ ¼ 0 026. m S :  
Next, we discuss the relative error and confidence inter-val for 

final range-aggregate query result.  
We use Theorem 2 to discuss relationship between DS and 

DY . 
 
Theorem 2. DS is an unbiased estimation of DY , that is  

EðDY Þ ¼ EðDSÞ. 
 
Proof According to Eq. (2), DY can be expressed as follows:  

M 
 i ¼1 DSi _  

DY  Si; (7) 
      

¼ P 
M S 

i 
 

i   1  

P ¼  
where DSi is relative error of local range-aggregate query 

result in the ith partition. According to Algorithm 2, the 
partitions are independent from each other, and fDSij1 _ i _ 
Mg are independent and identically distributed  
(i.i.d.) variables. The fDSig can be considered as a list of 

observations for variable DS. Let 
PM

  S
i
 be a constant C, 

  i¼1  

and the expectation of DY can be written as follows:  
! 

(8) EðDY Þ ¼ E  M   DSi _ S i   
¼ EðDSÞ: 

 P   

Thus EðDSÞ is an unbiased estimation of EðDY Þ. ut  
We further discuss the variance of variable Y , which is 

expressed as follows: 
 

M n  

Y ¼ Xij; (9) 
 

X X 
 
where M is the number of partitions, Xij is the value of 
aggregation-column in the queried ranges of the ith parti-tion. Let  
Si be the local range-aggregate query result in the ith partition, 
thus Y is 
 

M 
Y ¼ Si: (10) 

 

X  
In Eq. (10), Y is the sum of i.i.d. variables fDSig. Accord-ing to Central 

Limit Theorem, if M2 is large enough,2 Y obeys a normal distribution, that 

is Y _ Nðm; s Þ, where m and s is the 
 
expectation and variance of Si. 
 

We can obtain the corresponding formulas to compute 
confidence interval of variable Y . Let Y locate in an interval with 
probability p, which is expressed as:  



 
 
 
 
 
 
 
 

 
Fig. 6. Performance comparisons for count queries with eight days log 

files. 
Fig. 4. System configuration used in experiments. 

 
Then Y locates in z m; z m  with probability p, where 

p 

½

_ 

þ & z s 

z ¼ ffiffin, and zp is p-quantile in the standard normal distribu-  
tion. The final 100p percent confidence interval of range-

aggregate query result is ½z _ m; z þ m&. 
 

6  EXPERIMENTAL EVALUATION 
 
In this section, we present a prototype of FastRAQ, and evaluate 
its performance in terms of query cost, estimated relative errors, 
and storage overhead. We compare FastRAQ with Hive through 
range-aggregate query examples with real-world page traffic files 
from Wikipedia. 
 

Hive is a typical data analysis tool with OðNÞ time 

complexity for any ad-hoc range-aggregate queries. Hive can 

compile the task of an ad-hoc range-aggregate query into 

optimized mapreduce jobs and execute them on top of Hadoop. It 

is widely used to process extremely large data sets on commodity 

hardware in Facebook [18]. We compare against Hive in our 

experiment to illustrate per-formance improvement between 

FastRAQ and the OðNÞ time complexity methods. We run our 

software on an eleven node cluster connected by 1 Gbit Ethernet 

switch. Each server has 6 _ 2:0 GHz processors, 64 GB of RAM, 

and 6 SATA disks. We use Cloudera CDH4 in our experi-ments, 

which includes the packagings of Hadoop-2.0.0 and Hive-0.10.0. 

Hive runs with one master node and 10 slaves. 
 
 

 

6.1 Evaluation Methodology 
 
The framework of FastRAQ includes four types of servers: 
learning server, load server, query server, and storage serv-ers. 
The learning server fetches a certain amount of data set 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. The relative errors in different queried ranges. 

 
to learn data distributions, builds histogram and partition vectors 

for all partitions, and then dispatches them to other servers. The 

load servers receive online data sets, and deliver them to 

specified storage servers. The query server receives user‘s query 
request, and sends it to all storage servers. The storage servers 

keep RC-Tree for each partition, and respond the request 

independently. A typical frame-work of FastRAQ is shown in 

Fig. 4. 
 

In the experiments, we analyze the pagecount traffic sta-tistics 
files of Wikipedia [19]. We construct a table contain-ing four 
columns. We set projectcode and pagename columns as index 
columns, bytes field as aggregation-col-umn. The FastRAQ 
stores four months of the traffic files which includes 960 GB of 
uncompressed data. 
 

We first analyze the relative error in different queried 
examples. We use the traffic log files from Wikipedia in eight 
days. We set random variables in the queried examples and 
calculate the relative errors of different examples. The query 
example is ―select sumðbytesÞ from pagecounts where 

projectcode 2 ð
0

aa
0

;
0 0

Þ ‖, where ‗*‘ is a random variable  
string changed from ‗aa‘ to ‗zz‘. The relative errors in different 
que-ried examples are shown in Fig. 5. We just present the values 
of ‗*‘ on the X axis. When the ‗*‘ equals to ‗aa‘ and ‗ab‘, the 
rel-ative errors are equal to zero. The results are calculated by 
scanning the log files of the two edge-buckets. When the ‗*‘ 
grows larger, the relative error increases slightly. The rela-tive 
errors are nearly constant when the ‗*‘ equals to ‗cu‘, ‗dd‘ and  

‗ex‘. In our experiment, we use ð 
0

aa
0

;
0

 dd
0

Þ as our 
queried examples in following evaluations. 
 

The examples of range-aggregate queries include count and 
sum queries, and aggregate functions on union queries. The 
queried examples are shown below: 
 

Count query: Select countð Þ from pagecounts where 

projectcode 2 ð
0

aa
0

;
0

 dd
0

Þ;  
Sum query: Select sumðbytesÞ from pagecounts 

where projectcode 2 ð
0

aa
0

;
0

 dd
0

Þ.  
Count on union query: Select countð Þ from pagecounts 

where projectcode 2 ð
0

aa
0

;
0

 dd
0

Þ or pagename 2 ð
0

aa
0

;
0

 

dd
0

Þ;  
Sum on union query: Select sumðbytesÞ from pagecounts 

where projectcode 2 ð
0

aa 
0

;
0

 dd
0

Þ or pagename 2 

ð
0

aa
0

;
0

 dd
0

Þ;  
During processing of the preceding queries, Hive returns the 

exact queries results, and FastRAQ returns estimated results with 
relative errors. 



 
 
 
 
 
 
 
 

 
Fig. 7. Performance comparisons for sum queries with eight 
days log files. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Performance comparisons for count queries with eight weeks 
log files. 

 
 
 
 
 
 
 
 

 
Fig. 10. Performance comparisons for count on union 
queries with eight days log files. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11. Performance comparisons for sum on union queries with 
eight days log files. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Performance comparisons for sum queries with eight weeks log 
files. 

 
6.2 Performance Evaluation 
 
We analyze log files containing eight days of hourly log files (1.4 
billion records, 61.6 GB uncompressed files), and eight weeks of 
hourly log files (9.8 billion records, 432 GB uncom-pressed files) 
respectively. We examine the query perfor-mance and 
corresponding relative errors in the two systems. 
 

 

6.2.1 Performance of Range Query 
 
Figs. 6 and 7 illustrate query time comparisons with count and 

sum query examples. In the testings of eight days of log files, 

Hive costs 114.6 s for count queries, but FastRAQ only costs 4.3 

s for the same request. FastRAQ achieves 26 times of 

performance improvement on count queries than Hive. Figs. 8 

and 9 further illustrate the phenomenon of queries performance 

comparisons with eight weeks log files. In the testings of eight 

weeks of log files, Hive costs 520 s for sum query, while 

FastRAQ costs 6.2 s for the same request. In other words, 

FastRAQ achieves 84 times of performance improvement on sum 

request. It is believe that, when the size of data sets increases, 

FastRAQ can achieve better performance improvement on range-

aggregate queries than Hive. 

 
 

In our experiment, we generate about 2;000 partitions and 

1,000 buckets in each partition. That is to say, the amount of each 
data-log file accounts for less than one mil-lionth of the input 
data on average. So the query time changes slightly for FastRAQ 
in our daily or weekly step-ping tests. 
 

 

6.2.2 Performance of Union of Set Query 
 
Due to the fact that it needs to scan and merge massive duplicated 
tuples in union of set queries, we primarily focus our testings in 
union of set range-aggregate queries. The performance 
comparisons of union query in the two sys-tems are presented in 
Figs. 10, 11, 12, and 13 using the pre-ceding union queries 
examples. 
 

Hive predicts if the values of the two index-columns sat-isfy 

the union statement in memory. It occupies most of time to fetch 

tuples from disk files to memory, thus the query time does not 

change much from single index-column statement to union of two 

index-columns statements. In Fas-tRAQ, different index-columns 

of queried ranges can be searched in parallel in the RC-Tree. The 

overhead of union statements is to merge estimators from 

different index-col-umns. The merging overhead is negligible. 

Thus the query times of the two approaches are nearly the same 

as shown in Section 6.2.1. 
 

 

6.3  Relative Errors 
 
Hive obtains exact query result, and its relative error of que-ried 

result is 0. As discussed in Algorithm 7, it does not lead to extra 
errors into the estimate when we merge estimators of different 

queried dimensions. Thus the estimated relative errors of the 

union queries in multiple index-columns are the same as the 
errors in single index-column queries. We discuss the detailed 

relative errors of the range-aggregate 



 
 
 
 
 
 
 
 

 
Fig. 12. Performance comparisons for count on union 
queries with eight weeks log files. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 13. Performance comparisons for sum on union queries with 
eight weeks log files. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 14. Relative errors of count queries with eight days log files. 

 

 
queries in Section 6.2. Figs. 14, 15, 16, and 17 present the esti-

mated relative errors in the corresponding queries examples. 

Because when the volume of data sets is small, the estimator can 

achieve better cardinality estimation in each buckets [16]. Thus 

FastRAQ achieves more accurate cardinality esti-mation in small 

amount of data set environments. When the size of data increases, 

the relative error of estimator obeys standard normal distribution, 

and its standard variance (s) 
1:04 ffiffiffi  [16]. In our experiment, we set  m ¼ 2 

12 

equa ls  to , and the 

p m 

 
standard variance of relative error is 0.026, that is to say, the 
relative error falls into [_0:026; þ0:026] with given confi-dence 
interval. The experimental results are consistent with the 
conclusions in Section 5.  

Another important factor is the edge-bucket cardinality ratio 
 
(h0), which affects the estimated relative errors. When h0 is 
greater than a threshold, the estimators are obtained directly from 
leaves nodes of a RC-Tree, and it will add more errors into the 
 
final estimate. We further analyze the impact of h0 affections on 
the estimated relative errors. We design different query examples  
to make the values of h0 

 
 
 
 
 
 
 
 

 
Fig. 15. Relative errors of sum queries with eight days log files. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16. Relative errors of count queries with eight weeks log files. 

 
changing from 0.0001 to 2 percent, and examine the relative 
errors caused by estimators of the edge-buckets. Figs. 18 and 19 
 
illustrate the impact of  h0 on the estimated relative errors. It 
 
comes to the conclusion that when h0 grows smaller, the errors 
caused by the estimators of edge-buckets becomes smaller 
 
correspondingly. It is clearly that when h0 approaches to 0.02 
percent the errors caused by estimators of edge-buckets are 
negligible. Thus for those queries whose edge-buckets 
cardinalities are smaller than a threshold, we can directly use all 
the estimators from RC-Tree to generate the final approximate 
answering results. 

 

6.4  Pros and Cons 
 
In this section, we analyze the theoretical overheads of Fas-tRAQ 
in terms of update cost, query cost, and data volume of the 
histogram. We first define some parameters for analy-ses, and the 
notations are listed in Table 3. 
 

First, we examine the query cost of FastRAQ. According to 

Algorithm 4, the records can be loaded to the servers with 

balanced load distribution. The queries operations can be carried 

out between partitions parallelly. The cost of transmitting a local 

result of a partition is negligible. It pre-dominates the query cost 

of FastRAQ to search in the histo-gram. According to Algorithm 

7, it costs Oðlog BÞ time to search a random node in RC-Tree. If 

the number of buckets B is almost fixed in the histogram, it takes 

nearly constant time to search a random node in the histogram. 

Let the constant be C. When the estimators of the edge-buckets 

are produced by Nscanning data files, the query cost can be 

expressed as OðP _BÞ þ C. Thus both approaches reduce the 

volume of data needed to scanned greatly. Of course, when the 

edge cardinality ratio (h0) is small enough, we can get the 

estimators from RC-Tree directly, and the query cost approaches 

a constant even in big data environments. 

 
Second, we analyze the update cost of FastRAQ, which is 

represented by UpdateFastRAQ. The updating process 



 
 
 
 
 
 
 
 
 
 

 
Fig. 17. Relative errors of sum queries with eight weeks log files. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 18. Relative errors of different edge-bucket cardinality ratio (h0) 
with one week log files. 

 

     TABLE 3     

   The Notations for the Analysis of Complexity   
          

   parameters contents      
         

   n the number of records     
   d the number of index-columns    

   N the number of index tuples, and N ¼ n _ d   

   P the number of partitions     

   B the number of bucket for histogram    
       

 size of data files increases, the ratio     

     TABLE 4     
 Storage Overhead of RC-Tree Index with 1-4 Weeks Log Files 
      

 log files of 1-4 weeks 1 W 2 W 3 W 4 W 
      

 RC-Trees data volume (GB) 5.9 6.5 6.8 7.1 
 the volume ratio  0.11 0.06 0.04 0.03 
          

 

 
becomes significantly small. It is believed that if the volume of data 
files is large enough, the storage overhead produced by RC-Tree is 
negligible. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 19. Relative errors of different edge-bucket cardinality ratio (h0) 
with one month log files. 

 

includes delivering a record to a specified partition, and updates 

the parameters of the histogram in a partition. The delivering 

process can be done in constant time as discussed in Algorithm 4. 

When the number of nodes is almost fixed in the RC-Tree, the 

updating cost of RC-Tree approaches a constant. The update 

process can be parallelized among partitions, and the distributed 

throughput of FastRAQ can be expressed as UpdateFastRAQ ¼ P 

_ AvgRC _Tree, where AvgRC_Tree is the average update cost in 

each RC-Tree. We have designed a cached hash table for 

incremental updating process, and it will improve the 

performance of throughput significantly. 

 
Third, we discuss the storage overhead of FastRAQ. The RC-

Tree is built on top of the values of index-columns. The leaf node 
contains estimator and values of spreads for each bucket. The 
tuples values of index-columns are stored in the bucket data file. 
The size of RC-Tree volume is expressed as 
 
StorageFastRAQ ¼ P _ B _ NodeRC_Tree, 

where NodeRC_Tree is 

the size of leaf node in RC-Tree. We further examine the size of 
RC-Tree in TB-scale uncompressed data files. The testing results 
are shown in Tables 4 and 5. Meanwhile we present the volume 
ratio of RC-Tree and the uncompressed source data. When the 

 

7  RELATED WORK 

 

In the Existing System, An Approach called FASTRAQ, 

which is a new approximate answering approach in big data 

environments for accurate estimations quickly for range-

aggregate queries. The approach first divides big data into 

independent partitions with a balanced partitioning algorithm, 

and then generates a local estimation for those partitions. 

When a query acquires, the FASTRAQ obtains result directly 

by summarizing local estimates from all partitions. Here the 

balanced partitions algorithm is used which works with a 

straight sampling model and divides all data into different 

groups with regard to their attribute the value of interest, and 

further separates each group into multiple partitions according 

to the current data distributions and number of available 

servers. The local estimation is a new type of multi-dimension 

histogram that is build for learned data distributions. Our 

experimental results demonstrate the FASTRAQ provides 

range-aggregate query results within a time period two orders 

of magnitude lower than that of Hive, while the relative error 

is less than 3 percent within the given confidence interval.     

 

DISADVANTAGES: 

 As more data is processed, the estimate is 

progressively refined and the confidence interval is 

narrowed until the satisfied accuracy is obtained.   

 Only works on the homogeneous Environment. 

 
 
The range-aggregate query problem has been studied by 

Sharathkumar and Gupta [20] and Malensek [21] in compu-tational 

geometry and geographic information systems (GIS). Our work is 



primary focused on the approximated range-aggregate query for real-

time data analysis in OLAP. Ho et al. was the first to present Prefix-

Sum Cube approach to solving the numeric data cube aggregation [4] 

problems in OLAP. The essential idea of PC is to pre-compute prefix 

sums of cells in the data cube, which then can be used to answer 

range-aggregate queries at run-time. However, the updates to the 

prefix sums are proportional to the size of the data cube. Liang et al. 

[6] proposed a dynamic data cube for range-aggregate queries to 

improve the update cost, and 
 

d 

it still costs OðN
3
Þ time for each update, where d is the number of 

dimensions of the data cube and n is the number of distinct tuples at 
each dimension. The prefix sum approaches are suitable for the data 
which is static or rarely updated. For big data environments, new 
data sets arrive continuously, and the up-to-date information is what 
the analysts need. The PC and other heuristic pre -computing 
approaches are not applicable in such applications. 
 

An important approximate answering approach called Online 

Aggregation was proposed to speed range-aggregate queries on 

larger data sets [7]. OLA has been widely studied in relational 

databases [8] and the current cloud and stream-ing systems [9], [10]. 

Some studies about OLA have also been conducted on Hadoop and 

MapReduce [10], [11], [12]. The OLA is a class of methods to 

provide early returns with estimated confidence intervals 

continuously. As more data is processed, the estimate is 

progressively refined and the confidence interval is narrowed until 

the satisfied accuracy is obtained. But OLA can not respond with 

acceptable accu-racy within desired time period, which is 

significantly important on the analysis of trend for ad-hoc queries. 

 
Our work is related to two approximate answering meth-ods: 

sampling and histogram. Sampling is an important 



 

TABLE 
Storage OverLoad With  RC Tree  
 log files of 1-4 months 1 M 2 M 3 M 4 M 
      

 RC-Trees data volume (GB) 7.2 8.1 8.6 8.9 

 the volume ratio 0.031 0.017 0.012 0.009 
      

 

technique for processing of aggregate queries at run 

time. The sampling for massive data sets includes 

two types: row-level sampling and block-level 

sampling [22]. The work in [22] analyzed the 

impact of block-level sampling on statistic esti-

mation for histogram, and proposed the 

corresponding esti-mators with block-level 

samplings. Haas and K€onig€ [23] proposed a new 
sampling scheme, which combines the row-level 

and page-level samplings in the field of relational 

DBMS. Data sampling is also well used in the field 

of distrib-uted and streaming environments [24], 

[25]. Histogram is another important technique for 

selectivity estimation. A series of alterative 

techniques were presented in other articles to 

provide better selectivity estimation than the 

original equi-width method. The multi-dimensional 

histograms were also widely studied by researchers. 

The problem is more challeng-ing since it was 

shown that optimal splitting even in two 

dimensions is NP-hard [26]. The hTree [27] and 

mHist [28] are the typical works to support multi-

dimensional selectivity estimation. While the 

current works are shown that it is quite expensive 

to generate a multi-dimensional histogram. Fas-

tRAQ combines sampling, histogram and data 

partition approaches together to generate satisfied 

estimations in big data environments. All of the 

above techniques are designed for distributed 

range-aggregate queries paradigm, and it achieves 

better performance on both query and update proc-

essing in big data environments. 
 

 

8  CONCLUSIONS AND FUTURE WORK 
 

  

 In this paper, An Approach called 

FASTRAQ, which is a new approximate answering 

approach in big data environments for accurate 

estimations quickly for range-aggregate queries. 

The approach first divides big data into 

independent partitions with a balanced partitioning 

algorithm, and then generates a local estimation for 

those partitions. When a query acquires, the 

FASTRAQ obtains result directly by summarizing 

local estimates from all partitions. Here the 

balanced partitions algorithm is used which works 

with a straight sampling model and divides all data 

into different groups with regard to their attribute 

the value of interest, and further separates each 

group into multiple partitions according to the 

current data distributions and number of available 

servers. The local estimation is a new type of multi-

dimension histogram that is build for learned data 

distributions. Our experimental results demonstrate 

the FASTRAQ provides range-aggregate query 

results within a time period two orders of 

magnitude lower than that of Hive, while the 

relative error is less than 3 percent within the given 

confidence interval. 

In our Future work, we propose a new 

approach called FASTRAQ which works on the 

heterogeneous big data environment. That follows 

the answering approach in big data environments 

for accurate estimations quickly for range-

aggregate queries. This proposed work, divides big 

data into independent partitions with a balanced 

partitioning algorithm, and then generates a local 

estimation for those partitions. Our experimental 

can be implemented in the real time environment 

for the effective results 
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