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Abstract— Detection and prevention of data leakage is the major 

issue since attacks plays an important key role during data 

transmission. In existing paper they proposed and present a privacy 

preserving data-leak detection (DLD) solution to solve the issue 

where a special set of sensitive data digests is used in detection. An 

existing system used only fuzzy fingerprint technique that enhances 

data privacy during data-leak detection operations. When using 

fuzzy fingerprint increases the computational complexity as well as 

increases the memory to store the keys. So our proposed system is 

going to introduce a new encryption technique which is SIMON-

SPECK encryption algorithm it will carry a small size of keys and 

their parameters with very small in range. It reduces the 

computational complexity and reduces the key size small. Since, 

SIMO-SPECK only uses small key size at the same time provide 

security provided of RSA encryption algorithm. Finally our 

simulation result shows that our proposed system reduces the time 

as well as improves system accuracy. 

 
Index Terms— Data leak, network security, privacy, collection 

intersection. 
 

 
  I. INTRODUCTION    

 
Network security consists of the policies adopted to 

prevent and monitor authorized access, misuse, modification, 

or denial of a computer network and network-accessible 

resources. Network security involves the authorization of 

access to data in a network, which is controlled by the network 

administrator. Users choose or are assigned an ID and 

password or other authenticating information that allows them 

access to information and programs within their authority. 

Network security covers a variety of computer networks, both 

public and private, that are used in everyday jobs; conducting 

transactions and communications among businesses, 

government agencies and individuals. Networks can be 

private, such as within a company, and others which might be 

open to public access. Network security is involved in 

organizations, enterprises, and other types of institutions. It 

does as its title explains: It secures the network, as well as 

protecting and overseeing operations being done.  

The most common and simple way of protecting a 

network resource is by assigning it a unique name and a 

corresponding password. Network security starts with 

authenticating, commonly with a username and a password. 

Since this requires just one detail authenticating the user name 

—i.e., the password— this is sometimes termed one-factor 

authentication. With two-factor authentication, something the 

user 'has' is also used (e.g., a security token or 'dongle', an 

ATM card, or a mobile phone); and with three-factor 

authentication, something the user 'is' also used (e.g., a 

fingerprint or retinal scan). Once authenticated, a firewall 

enforces access policies such as what services are allowed to 

be accessed by the network users. Though effective to prevent 

unauthorized access, this component may fail to check 

potentially harmful content such as computer worms or 

Trojans being transmitted over the network.  

Anti-virus software or an intrusion prevention system 

(IPS)[2] help detect and inhibit the action of such malware. An 

anomaly-based intrusion detection system may also monitor 

the network like wireshark traffic and may be logged for audit 

purposes and for later high-level analysis. Communication 

between two hosts using a network may be encrypted to 

maintain privacy. Honeypots, essentially decoy network-

accessible resources, may be deployed in a network as 

surveillance and early-warning tools, as the honeypots are not 

normally accessed for legitimate purposes. Techniques used 

by the attackers that attempt to compromise these decoy 

resources are studied during and after an attack to keep an eye 

on new exploitation techniques. Such analysis may be used to 

further tighten security of the actual network being protected 

by the honeypot. A honeypot can also direct an attacker's 

attention away from legitimate servers. A honeypot 

encourages attackers to spend their time and energy on the 

decoy server while distracting their attention from the data on 

the real server. Similar to a honeypot, a honeynet is a network 

set up with intentional vulnerabilities. 

 Its purpose is also to invite attacks so that the 

attacker's methods can be studied and that information can be 

used to increase network security. A honeynet typically 

contains one or more honeypots. Security management for 

networks is different for all kinds of situations. A home or 

small office may only require basic security while large 

businesses may require high-maintenance and advanced 

software and hardware to prevent malicious attacks from 

hacking and spamming. Networks are subject to attacks from 

malicious sources. Attacks can be from two categories: 

"Passive" when a network intruder intercepts data traveling 

through the network, and "Active" in which an intruder 

initiates commands to disrupt the network's normal operation. 

Intrusion detection System 

An intrusion detection system (IDS) is a device or 

software application that monitors network or system activities 

for malicious activities or policy violations and produces 

reports to a management station. IDS come in a variety of 

“flavors” and approach the goal of detecting suspicious traffic 

in different ways. There are network based (NIDS) and host 

based (HIDS) intrusion detection systems. NIDS is a network 

security system focusing on the attacks that come from the 

inside of the network (authorized users). When we classify the 

designing of the NIDS according to the system interactivity 

property, there are two types: on-line and off-line NIDS. On-

line NIDS deals with the network in real time and it analyses 

the Ethernet packet and applies it on the some rules to decide 

if it is an attack or not. Off-line NIDS deals with a stored data 

and pass it on a some process to decide if it is an attack or not. 



Some systems may attempt to stop an intrusion 

attempt but this is neither required nor expected of a 

monitoring system. Intrusion detection and prevention systems 

(IDPS) are primarily focused on identifying possible incidents, 

logging information about them, and reporting attempts. In 

addition, organizations use IDPSes for other purposes, such as 

identifying problems with security policies, documenting 

existing threats and deterring individuals from violating 

security policies. IDPSes have become a necessary addition to 

the security infrastructure of nearly every organization. 

IDPSes typically record information related to observed events 

notify security administrators of important observed events 

and produce reports. Many IDPSes can also respond to a 

detected threat by attempting to prevent it from succeeding.  

They use several response techniques, which involve 

the IDPS stopping the attack itself, changing the security 

environment (e.g. reconfiguring a firewall) or changing the 

attack's content. A "network intrusion detection system 

(NIDS)" monitors traffic on a network looking for suspicious 

activity, which could be an attack or unauthorized activity. A 

large NIDS server can be set up on a backbone network, to 

monitor all traffic; or smaller systems can be set up to monitor 

traffic for a particular server, switch, gateway, or router. In 

addition to monitoring incoming and outgoing network traffic, 

a NIDS server can also scan system files looking for 

unauthorized activity and to maintain data and file integrity. 

The NIDS server can also detect changes in the server core 

components.  

In addition to traffic monitoring, a NIDS server can 

also scan server log files and look for suspicious traffic or 

usage patterns that match a typical network compromise or a 

remote hacking attempt. The NIDS server can also server a 

proactive role instead of a protective or reactive function. 

Possible uses include scanning local firewalls or network 

servers for potential exploits, or for scanning live traffic to see 

what is actually going on. Keep in mind that a NIDS server 

does not replace primary security such as firewalls, 

encryption, and other authentication methods. The NIDS 

server is a backup network integrity device. Neither system 

(primary or security and NIDS server) should replace common 

precaution (building physical security, corporate security 

policy, etc.).  

An intrusion detection system (IDS) monitors 

network traffic and monitors for suspicious activity and alerts 

the system or network administrator. In some cases the IDS 

may also respond to anomalous or malicious traffic by taking 

action such as blocking the user or source IP address from 

accessing the network. IDS come in a variety of “flavors” and 

approach the goal of detecting suspicious traffic in different 

ways. 

IDS was originally developed this way because at the 

time the depth of analysis required for intrusion detection 

could not be performed at a speed that could keep pace with 

components on the direct communications path of the network 

infrastructure.  As explained, the IDS are also a listen-only 

device. The IDS monitors traffic and report its results to an 

administrator, but cannot automatically take action to prevent 

a detected exploit from taking over the system. Attackers are 

capable of exploiting vulnerabilities very quickly once they 

enter the network, rendering the IDS an inadequate 

deployment for prevention device. 

NIDS 

Network Intrusion Detection Systems are placed at a 

strategic point or points within the network to monitor traffic 

to and from all devices on the network. Ideally you would 

scan all inbound and outbound traffic; however doing so might 

create a bottleneck that would impair the overall speed of the 

network. An NIDS is strategically positioned at various points 

on the network to monitor traffic going to and from network 

devices. NIDS solutions offer sophisticated, real-time 

intrusion detection capabilities often consisting of an assembly 

of interoperating pieces: a standalone appliance, hardware 

sensors, and software components are typical components that 

make up an NIDS. These pieces working in concert allow for 

a wider range of network intrusion detection capabilities than 

HIDS solutions. 

Data Leakage Detection 

Sometimes a data distributor gives sensitive data to a 

set of third parties. Sometime later, some of the data is found 

in an unauthorized place (e.g., on the web or on a user's 

laptop). The distributor must then investigate if data leaked 

from one or more of the third parties, or if it was 

independently gathered by other means. Network data-leak 

detection (DLD) typically performs deep packet inspection 

(DPI) and searches for any occurrences of sensitive data 

patterns. DPI is a technique to analyze payloads of IP/TCP 

packets for inspecting application layer data, e.g., HTTP 

header/content. 

The detection system can be deployed on a router or 

integrated into existing network intrusion detection systems 

(NIDS). Straightforward realizations of data-leak detection 

require the plaintext sensitive data. However, this requirement 

is undesirable, as it may threaten the confidentiality of the 

sensitive information. If a detection system is compromised, 

then it may expose the plaintext sensitive data (in memory). In 

addition, the data owner may need to outsource the data-leak 

detection to providers, but may be unwilling to reveal the 

plaintext sensitive data to them. Therefore, one needs new 



data-leak detection solutions that allow the providers to scan 

content for leaks without learning the sensitive information. 

 

II. MODEL AND OVERVIEW 

 

We abstract the privacy-preserving data-leak detection 

problem with a threat model, a security goal and a privacy 

goal. First we describe the two most important players in our 

abstract model: the organization (i.e., data owner) and the 

data-leak detection (DLD) provider. 

 

1) Organization owns the sensitive data and authorizes the 

DLD provider to inspect the network traffic from the 

organizational networks for anomalies, namely inadver-

tent data leak. However, the organization does not want 

to directly reveal the sensitive data to the provider.  

 

2) DLD provider inspects the network traffic for potential 

data leaks. The inspection can be performed offline with-

out causing any real-time delay in routing the packets. 

However, the DLD provider may attempt to gain knowl-

edge about the sensitive data.  

 

We describe the security and privacy goals in Section II-A 

and Section II-B. 

 

A. Security Goal and Threat Model 

 

We categorize three causes for sensitive data to appear on 

the outbound traffic of an organization, including the 

legitimate data use by the employees. 

 

A Case I Inadvertent data leak: The sensitive data is 

accidentally leaked in the outbound traffic by a legitimate 

user. This paper focuses on detecting this type of 

accidental data leaks over supervised network channels. 

Inadvertent data leak may be due to human errors such as 

forgetting to use encryption, carelessly for-warding an 

internal email and attachments to outsiders, or due to 

application flaws (such as described in [12]). A 

supervised network channel could be an unencrypted 

channel or an encrypted channel where the content in it 

can be extracted and checked by an authority. Such a 

channel is widely used for advanced NIDS where MITM 

(man-in-the-middle) SSL sessions are established instead 

of normal SSL sessions [13]. 

 

•  Case II Malicious data leak: A rogue insider or a piece of 

 
stealthy software may steal sensitive personal or organiza-

tional data from a host. Because the malicious adversary can 

use strong private encryption, steganography or covert 

channels to disable content-based traffic inspection, this type 

of leaks is out of the scope of our network-based solution. 

Host-based defenses (such as detecting the infection onset 

[14]) need to be deployed instead.  
• Case III Legitimate and intended data transfer: The 

sensitive data is sent by a legitimate user intended for 

legitimate purposes. In this paper, we assume that the 

data owner is aware of legitimate data transfers and 

permits such transfers. So the data owner can tell whether 

a piece of sensitive data in the network traffic is a leak 

using legitimate data transfer policies.  
 

The security goal in this paper is to detect Case I leaks, that 

is inadvertent data leaks over supervised network channels. In 

other words, we aim to discover sensitive data appearance in 

network traffic over supervised network channels. We assume 

that: i) plaintext data in supervised network channels can be 

extracted for inspection; ii) the data owner is aware of 

legitimate data transfers (Case III); and iii) whenever sensitive 

data is found in network traffic, the data owner can decide 

whether or not it is a data leak. Network-based security 

approaches are ineffective against data leaks caused by mal-

ware or rogue insiders as in Case II, because the intruder may 

use strong encryption when transmitting the data, and both the 

encryption algorithm and the key could be unknown to the 

DLD provider. 

 
B. Privacy Goal and Threat Model 
 

To prevent the DLD provider from gaining knowledge of 

sensitive data during the detection process, we need to set up a 

privacy goal that is complementary to the security goal above. We 

model the DLD provider as a semi-honest adversary, who follows 

our protocol to carry out the operations, but may attempt to gain 

knowledge about the sensitive data of the data owner. Our privacy 

goal is defined as follows. The DLD provider is given digests of 

sensitive data from the data owner and the content of network 

traffic to be examined. The DLD provider should not find out the 

exact value of a piece of 
1

 , where K is  
an integer representing the number of all possible sensitive-
data candidates that can be inferred by the DLD provider.  
We present a privacy-preserving DLD model with a new fuzzy 
fingerprint mechanism to improve the data protection against 
semi-honest DLD provider. We generate digests of sensitive 
data through a one-way function, and then hide the sensitive 
values among other non-sensitive values via fuzzification. The 
privacy guarantee of such an approach is much higher than 

K
1

 when there is no leak in traffic,  
because the adversary’s inference can only be gained through 
brute-force guesses.  

The traffic content is accessible by the DLD provider in 

plaintext. Therefore, in the event of a data leak, the DLD 

provider may learn sensitive information from the traffic, 



Our solution confines the amount of maximal information 

learned during the detection and provides quantitative 

guarantee for data privacy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Our Privacy-preserving Data-Leak Detection Model 
 

C. Overview of Privacy-Enhancing DLD 
 

Our privacy-preserving data-leak detection method supports 

practical data-leak detection as a service and minimizes the 

knowledge that a DLD provider may gain during the process. 

Fig. 1 lists the six operations executed by the data owner and 

the DLD provider in our protocol. They include PREPROCESS 

run by the data owner to prepare the digests of sensitive data, 

RELEASE for the data owner to send the digests to the DLD 

provider, MONITOR and DETECT for the DLD provider to 

collect outgoing traffic of the organization, compute digests of 

traffic content, and identify potential leaks, REPORT for the 

DLD provider to return data-leak alerts to the data owner 

where there may be false positives (i.e., false alarms), and 

POSTPROCESS for the data owner to pinpoint true data-leak 

instances. Details are presented in the next section.  
The protocol is based on strategically computing data 

similarity, specifically the quantitative similarity between the 
sensitive information and the observed network traffic. High 
similarity indicates potential data leak. For data-leak detection, 
the ability to tolerate a certain degree of data transformation in 
traffic is important. We refer to this property as noise 
tolerance. Our key idea for fast and noise-tolerant comparison 
is the design and use of a set of local features that 
 
are representatives of local data patterns, e.g., when byte b2 
appears in the sensitive data, it is usually surrounded by bytes  

b1 and b 3 forming a local pattern b1, b 2, b3. Local features 
preserve data patterns even when modifications (insertion, 
deletion, and substitution) are made to parts of the data. For 

example, if a byte b4 is inserted after b3, the local pattern b1,  

b2, b3 is retained though the global pattern (e.g., a hash of the 

entire document) is destroyed. To achieve the privacy goal, the 
data owner generates a special type of digests, which we call 
fuzzy fingerprints. Intuitively, the purpose of fuzzy fingerprints is 
to hide the true sensitive data in a crowd. It prevents the DLD 
provider from learning its exact value. We describe the technical 
details next. 
 

III. FUZZY FINGERPRINT METHOD AND PROTOCOL 
 

We describe technical details of our fuzzy fingerprint mech-
anism in this section. 

 
A. Shingles and Fingerprints 
 

The DLD provider obtains digests of sensitive data from the 

data owner. The data owner uses a sliding window and Rabin 

fingerprint algorithm [15] to generate short and hard-to-

reverse (i.e., one-way) digests through the fast polynomial 

modulus operation. The sliding window generates small frag-

ments of the processed data (sensitive data or network traffic), 

which preserves the local features of the data and provides the 

noise tolerance property. Rabin fingerprints are computed as 

polynomial modulus operations, and can be implemented with 

fast XOR, shift, and table look-up operations. The Rabin 

fingerprint algorithm has a unique min-wise inde-pendence 

property [16], which supports fast random finger-prints 

selection (in uniform distribution) for partial fingerprints 

disclosure.  
The shingle-and-fingerprint process is defined as follows. A 

sliding window is used to generate q-grams on an input binary 

string first. The fingerprints of q-grams are then computed. 
 

A shingle (q-gram) is a fixed-size sequence of contiguous 

bytes. For example, the 3-gram shingle set of string abcdefgh 

consists of six elements {abc, bcd, cde, def, efg, fgh}. 

Local feature preservation is accomplished through the use of 

shingles. Therefore, our approach can tolerate sensitive data 

modification to some extent, e.g., inserted tags, small amount of 

character substitution, and lightly reformatted data. The use of 

shingles for finding duplicate web documents first appeared in 

[17] and [18].  
The use of shingles alone does not satisfy the one-wayness 

requirement. Rabin fingerprint is utilized to satisfy such 
requirement after shingling. In fingerprinting, each shingle is  

treated as a polynomial q(x ). Each coefficient of q(x ), i.e., ci 
(0 < i < k), is one bit in the shingle. q(x ) is mod by a selected 
irreducible polynomial p(x ). The process shown 

in (1) maps a k-bit shingle into a p f -bit fingerprint f where 
the degree of p(x ) is p f + 1.  

f = c1x 
k−1

 + c2 x 
k−2

 + . . . + ck−1 x + ck mod p(x ) (1) 
From the detection perspective, a straightforward method is for 

the DLD provider to raise an alert if any sensitive fingerprint 
1 

matches the fingerprints from the traffic.  However, this  
approach has a privacy issue. If there is a data leak, there is a 
match between two fingerprints from sensitive data and network 
traffic. Then, the DLD provider learns the corresponding shingle, 
as it knows the content of the packet. Therefore, the central 
challenge is to prevent the DLD provider  
from learning the sensitive values even in data-leak 
scenarios, while allowing the provider to carry out the 

traffic inspection.  
We propose an efficient technique to address this problem.  

The main idea is to relax the comparison criteria by strategi-

cally introducing matching instances on the DLD provider’s 
side without increasing false alarms for the data owner. 

Specifically, i) the data owner perturbs the sensitive-data 

fingerprints before disclosing them to the DLD provider,  
and ii) the DLD provider detects leaking by a range-based 

comparison instead of the exact match. The range used in 



the comparison is pre-defined by the data owner and 
correlates to the perturbation procedure. We define 

the notions of fuzzy 
 

length and fuzzy set next and then describe how they are 
used in our detailed protocol in Section III-B. 

Definition 1: Given a p f -bit-long fingerprint f , the fuzzy 
length pd ( pd < p f ) is the number of bits in f that may be 
perturbed by the data owner  

Definition 2: Given a fuzzy length pd , and a collection of 
fingerprints, the fuzzy set S f, pd of a fingerprint f is the set of 
fingerprints in the collection whose values differ from f by at 

most 2
p

d − 1. 
In Definition 2, the size of the fuzzy set ¦S f, pd ¦ is upper  
bounded by 2 

d
 , but the actual size may be smaller due to the 

is released to the DLD provider for use in the detection, along 
with the public parameters 
 

(q, p(x ), pd , M). The data owner keeps S for use in the 
subsequent POSTPROCESS operation. 

3) MONITOR: This operation is run by the DLD provider.   
The DLD provider monitors the network traffic T from 
the data owner’s organization. Each packet in T is  

collected and the payload of it is sent to the next 
operation as the network traffic (binary) string T . 

˜ 
The payload of each packet is not the only choice to 

define T . A more sophisticated approach could identify 

 
fingerprints and so the data owner can just select r smallest 

elements in S
∗

 to perform partial disclosure. The r elements are 

then sent∗ to the DLD provider in RELEASE operation instead of 

S . We implement the partial disclosure policy, evaluate its 

influence on detection rate, and verify the min-wise independence 

property of Rabin fingerprint in Section V. 
 

IV. ANALYSIS AND DISCUSSION 
 

We analyze the security and privacy guarantees provided by 

our data-leak detection system, as well as discuss the sources of 

possible false negatives – data leak cases being overlooked and 

false positives – legitimate traffic misclassified as data leak in the 

detection. We point out the limitations associated with the 

proposed network-based DLD approaches. 
 
A. Privacy Analysis 
 

Our privacy goal is to prevent the DLD provider from 

inferring the exact knowledge of all sensitive data, both the 

outsourced sensitive data and the matched digests in network 

traffic. We quantify the probability for the DLD provider to  
infer the sensitive shingles as follows.   

p f − pd 
 

A polynomial-time adversary has no greater than 2  

n  

    

probability of correctly inferring a sensitive  shingle, where 
 

p f is the length of a fingerprint in bits, pd is the fuzzy 
  

˜  
TCP flows and extract contents in a TCP session as T . 

˜ 
length, and n ∈ [2 

p
 
f
 
−

 
pd

 , 2
p

 f ] is the size of the set of traffic 
fingerprints, assuming that the fingerprints of shingles are 

Contents of other protocols can also be retrieved 
if required by the detection metrics. 

 
C. Extensions  
 

1) Fingerprint Filter: We develop this extension to use 

Bloom filter in the DETECT operation for efficient set inter-

section test. Bloom filter [19] is a well-known space-saving 

data structure for performing set-membership test. It applies 

multiple hash functions to each of the set elements and stores 

the resulting values in a bit vector; to test whether a value v 

belongs to the set, the filter checks each corresponding bit 

mapped with each hash function. Bloom filter in combination 

with Rabin fingerprint is referred to by us as the fingerprint 

filter. We use Rabin fingerprints with variety of modulus’s in 

fingerprint filter as the hash functions, and we perform 

extensive experimental evaluation on both fingerprint filter 

and bloom filter with MD5/SHA in Section V.  
 

2) Partial Disclosure: Using the min-wise independent 

property of Rabin fingerprint, the data owner can quickly 

disclose partial fuzzy fingerprints to the DLD provider. The 

purpose of partial disclosure is two-fold: i) to increase the 

scalability of the comparison in the DETECT operation, and   
ii) to reduce the exposure of data to the DLD provider for 

privacy. The method of partial release of sensitive data 

fingerprints is similar to the suppression technique in database 

anonymization [20], [21].  
This extension requires a good uniform distribution random 

selection to avoid disclosure bias. The min-wise indepen-

dence feature of Rabin fingerprint guarantees that the minimal 

fingerprint is coming from a (uniformly distributed) random 

shingle. The property is also valid for a minimum set of 

 
uniformly distributed and are equally likely to be sensitive and 

appear in the traffic. 
We explain our quantification in two scenarios: 

∗ 
 

i) There is a match between a sensitive fuzzy finger-print f 
 

(derived from the sensitive fingerprint f ) and fingerprints 
 

from the network traffic. Because the sizepof 
 

fuzzy set S f, pd is upper bounded by 2 
d

 (Definition 2), there could be 
 

pd  

(sensitive or non-sensitive) fingerprints fuzzified into the 
 

at most 2 ∗  

identical f . Given a set (size n) of traffic fingerprints, the DLD    
 

provider  

find K fingerprints matched to f 
∗
 

 

expects to  
 

where K = 
 n pd 

. 
 

 2 
p

 f × 2  
 

a) If f corresponds to a sensitive shingle leaked in 
the traffic, i.e., f is within the K traffic fingerprints, 
the likelihood of correctly pinpointing f from the 
K fingerprints is 1  , or  2 

p
 f 

−
 

p
d . The likelihood is 

 K    n 
fare because  both  sensitive data and network  

traffic contain binary data. It is difficult to predict 
the subspace of the sensitive data in the entire 
binary space.  

b) If the shingle form of f is not leaked in the traffic,  
the DLD provider cannot∗ use the K traffic finger-prints, 

which match f , to infer f . Alternatively,∗ the DLD 

provider needs to brute force f to get f , which is 

discussed as in the case of no match.  
ii) There is no match between sensitive and traffic finger-

prints. The adversarial DLD provider needs to brute 

force reverse the Rabin fingerprinting computation to 

obtain the sensitive shingle. There are two difficulties in 

reversing a fingerprint: i) Rabin fingerprint is a one-way 

hash. ii) Multiple shingles can map to the same  



 
fingerprint. It requires to searching the complete set of 

possible shingles for a fingerprint and to identify the 

sensitive one from the set. This brute-force attack is 

difficult for a polynomial-time adversary, thus the 

success probability is not included. 
 

In summary, the DLD provider cannot decide whether the 

alerts (traffic fingerprints matched f 
∗

) contain any leak  
not (case i.a or i.b). Even if it is known that there is a real 
leak in the network traffic, the polynomial-time DLD provide a 
sensitive shingle (case i.a). 
 
B. Alert Rate 
 

We quantify the rate of alerts expected in the traffic for a 

sensitive data entry (the fuzzified fingerprints set of a piece of 

sensitive data) given the following values: the total number of 

fuzzified sensitive fingerprints τ , the expected traffic fin-

gerprints set size n, fingerprint length p f , fuzzy length p d , 

partial disclosure rate ps ∈ (0, 1], and the expected rate α, 

which is the percentage of fingerprints in the sensitive data 

entry that appear in the network traffic. The expected alert rate 

R is presented in (4). 
 

V. EXPERIMENTAL EVALUATION 
 

We implement our fuzzy fingerprint framework in Python, 

including packet collection, shingling, Rabin fingerprinting, as 

well as partial disclosure and fingerprint filter extensions. Our 

implementation of Rabin fingerprint is based on cyclic 

redundancy code (CRC). We use the padding scheme men-

tioned in [22] to handle small inputs. In all experiments, the 

shingles are in 8-byte, and the fingerprints are in 32-bit (33-bit 

irreducible polynomials in Rabin fingerprint). We set up a 

networking environment in VirtualBox, and make a scenario 

where the sensitive data is leaked from a local network to the 

Internet. Multiple users’ hosts (Windows 7) are put in the local 
network, which connect to the Internet via a gateway (Fedora). 

Multiple servers (HTTP, FTP, etc.) and an attacker-controlled 

host are put on the Internet side. The gateway dumps the 

network traffic and sends it to a DLD server/provider (Linux). 

Using the sensitive-data finger-prints defined by the users in 

the local network, the DLD server performs off-line data-leak 

detection. The speed aspect of privacy-preserving data-leak 

detection is another topic and we study it in [23].  
In our prototype system, the DLD server detects the sensitive 

data within each packet on basis of a stateless filtering system. 

We define the sensitivity of a packet in (5), which is used by the 

DLD provider in DETECTION. It indicates the  
likelihood of a packet containing sensitive data. 

  S∗   T  
S 

 
 

 pd ̈   
p

d     
 

 | _   ∩ _ |   ∗  
 

Spacket =       | |  (5)  min( S , T )  × S  
 

  | ∗| | |   | ¨ ∗| 
packet. S

∗
 
 

T is the set of all fingerprints  extracted in a 
 

is the set of all sensitive fuzzy ∗fingerprints. For each piece of sensitive 
 

data, the data owner computes S and reveals a     
 

partial set S
∗

 (S
∗ S

∗
) to the DLD provider. The operator    

t  ¨  ¨          
 

⊆          _ 
 

indicates right shifting every fingerprint in a set by t bits, 
which is the implementation of a simple mask M in our 
protocol (Section III-B) 

| 
S
∗
 / S

∗ estimates the leaking level 
 

 | | | . When 
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too few fuzzy fingerprints are revealed, e.g., 10%, the samples 
may not sufficiently describe the leaking characteristic of the 
traffic, and the estimation can be imprecise. For each packet,  
the DLD server computes Spacket (Spacket ∈ [0, 1]). If it is higher than a 

threshold Sthres ∈ (0, 1), T is reported back to the data owner, and the data 

owner uses (6) to determine  
whether it is a real leak in POSTPROCESS. 
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The difference between (5) operated by the DLD provider 
and (6) by the data owner is that the original fingerprints S are 

¨ 
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used in (6) instead of the sampled and fuzzified set S in (5), so 
the data owner can pinpoint the exact leaks. 

The use of Spacket and Sthres for detection is important 
because individual shingles or fingerprints are not accurate  
features to represent an entire piece of sensitive data. Sensitive 
data can share strings with non-sensitive data, e.g., formatting 
strings, which results in occasionally reported 

sensitive fingerprints. Spacket is an accumulated score and 

Sthres filters out packets with occasionally 
discovered sensitive fingerprints.  

The evaluation goal is to answer the following questions: 
 

1) Can our solution accurately detect sensitive data leak in 
the traffic with low false positives (false alarms) and 

high true positives (real leaks)?   
2) Does using partial sensitive-data fingerprints reduce the 

detection accuracy in our system?   
3) What is the performance advantage of our fingerprint 

filter over traditional Bloom filter with SHA-1?   
4) How to choose a proper fuzzy length and make a balance 

between the privacy need and the number of alerts?   
In the following subsection, we experimentally addressed and 

answered all the questions. For the first three questions, we 

present results based on the Spacket value calculated in (6). The 

first and second questions are answered in Section V-A. The third 
question is discussed in Section V-B. The last question is 
designed to understand the properties of fuzzification and partial 
disclosure, and it is addressed in Section V-C. 

 
A. Accuracy Evaluation 
 

We evaluate the detection accuracy in simple and complex 

leaking scenarios. First we test the detection rate and false pos-

itive rate in three simple experiments where the sensitive data is 

leaked in its original form or not leaked. Then we present 

accuracy evaluation on more complex leaking experiments to 

reproduce various real-world leaking detection scenarios. 
1) Simple Leaking Scenarios: We test our prototype without 

partial disclosure in simple leaking scenarios, i.e., S
∗ S

∗
. 

¨ =  
We generate 20,000 personal financial records as the sensitive 
data and store them in a text file. The data contains person 
name, social security number, credit card number, credit card 



expiration date, and credit card CVV.  
To evaluate the accuracy of our strategy, we perform three 

separate experiments using the same sensitive dataset:  
Exp.1 True leak A user leaks the entire set of sensitive data 

via FTP by uploading it to a remote FTP server.  
Exp.2 No leak The non-related outbound HTTP traffic of 20 

users is captured (30 minutes per user), and given to 

the DLD server to analyze. No sensitive data (i.e., 

zero true positive) should be confirmed.  
Exp.3 No leak The Enron dataset (2.6 GB data, 150 users’ 

517,424 emails) as a virtual network traffic is given 

to the DLD server to analyze. Each virtual network 

packet created is based on an email in the dataset. No 

sensitive data (i.e., zero true positive) should be 

confirmed by the data owner. 
 

The detection results are shown in Table I. Among the three 

experiments, the first one is designed to infer true positive rate. 

We manually check each packet and the DLD server detects all 

651 real sensitive packets (all of them have sensitivity values 

greater than 0.9). The sensitivity value is less than one, because 

the high-layer headers (e.g., HTTP) in a packet are not sensitive. 

The next two experiments are designed to estimate the false 

positive rate. We found that none of the packets has a sensitivity 

value greater than 0.05. The results indicate that our design 

performs as expected on plaintext. 

 
2) Complex Leaking Scenarios: The data owner may reveal 

a subset of sensitive data’s fingerprints to the DLD server for 
detection, as opposed to the entire set. We are particularly 
interested in measuring the percentage of revealed fingerprints 
that can be detected in the traffic, assuming that fingerprints 

are equally likely to be leaked.
2

 We reproduce four real-world  
scenarios where data leaks are caused by human users or 
software applications. 
 

Exp.4 Web leak: a user posts sensitive data on wiki 

(MediaWiki) and blog (WordPress) pages.  
Exp.5 Backdoor leak: a program (Glacier) on the user’s 

machine (Windows 7) leaks sensitive data.  
Exp.6 Browser leak: a malicious Firefox extension 

FFsniFF records the information in sensitive web  
forms, and emails the data to the attacker. Exp.7 

Keylogging leak: a keylogger EZRecKb exports 

intercepted keystroke values on a user’s host.
3

 It  
con-nects to a SMTP server on the Internet side 
and sends its log of keystrokes periodically. 

 
In these four experiments, the source file of TCP/IP page on 

Wikipedia (24KB in text) is used as the sensitive data. The 

detection is performed at various partial disclo-sure rate. The 

subset of the sensitive fingerprints is selected randomly. The 

sensitivity threshold is Sthres = 0.05. 

 
The detection results are shown in Table I. Among the three 

experiments, the first one is designed to infer true positive rate. 

We manually check each packet and the DLD server detects all 

651 real sensitive packets (all of them have sensitivity values 

greater than 0.9). The sensitivity value is less than one, because 

 
the high-layer headers (e.g., HTTP) in a packet are not sensitive. 

The next two experiments are designed to estimate the false 

positive rate. We found that none of the packets has a sensitivity 

value greater than 0.05. The results indicate that our design 

performs as expected on plaintext. 
 

Fig. 2 shows the comparison of performance across various 

size of fingerprints used in the detection, in terms of the 

averaged sensitivity per packet in (a) and the number of 

detected sensitive packets in (b). These accuracy values reflect 

results of the POSTPROCESS operation.  
The results show that the use of partial sensitive-data 

fingerprints does not much degrade the detection rate 

compared to the use of full sets of sensitive-data fingerprints. 

However, extreme small sampling rates, e.g., 10%, may not 
provide sufficient numbers of fingerprints to describe the 
leaking characteristic of the traffic. The packet sensitivity esti- 

| |/| 
¨
 | 

mation ( S S in (6)) magnifies the signal (the real sensitivity 
of a packet) as well as the noise produced by fingerprint 
sampling. The precision could be affected and drops, e.g., 6 

packets with 10% vs. 3 packets with 100% for Keylogger 

in Fig. 2 (b).  
In Fig. 2 (a), the sensitivities of experiments vary due to 

different levels of modification by the leaking programs, which 

makes it difficult to perform detection. WordPress substi-tutes 

spaces with +’s when sending the HTTP POST request. 

EZRecKb inserts function-key as labels into the original text. 

Typing typos and corrections also bring in modification to the 

original sensitive data. In Fig. 2 (b), [all] results contain both 

outbound and inbound traffic and double the real number of 

sensitive packets in Blog and Wiki scenarios due to HTML 

fetching and displaying of the submitted data. 

 
B. Runtime Comparison 
 

Our fingerprint filter implementation is based on the Bloom 

filter library in Python (Pybloom). We compare the runtime 

of Bloom filter provided by standard Pybloom (with 

dynamically selected hash function from MD5, SHA-1, SHA-

256, SHA-384 and SHA-512) and that of fingerprint filter 

with Rabin fingerprint. For Bloom filters and fingerprint 

filters, we test their performance with 2, 6, and 10 hash 

functions. We inspect 100 packets with random content 

against 10 pieces sensitive data at various lengths – there are a 

total of 1,625,600 fingerprints generated from the traffic and 

76,160 pieces of fingerprints from the sensitive data. 

 
The partial disclosure scheme may result in false negatives, 

i.e., the leaked data may evade the detection because it is not 

covered by the released fingerprints. This issue illustrates the 

tradeoff among detection accuracy, privacy guarantee and 

detection efficiency. Fortunately, it is expensive for an 

attacker to escape the detection with partial disclosure. On one 

hand, Rabin fingerprint guarantees that every fingerprint has 

the same probability to be selected and released through its 

min-wise independence property. Deliberately choosing 

unreleased segments from sensitive data is not easy.
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B. Runtime Comparison 
 

Our fingerprint filter implementation is based on the Bloom 

filter library in Python (Pybloom). We compare the runtime 

 
of Bloom filter provided by standard Pybloom (with 

dynamically selected hash function from MD5, SHA-1, SHA-

256, SHA-384 and SHA-512) and that of fingerprint filter 

with Rabin fingerprint. For Bloom filters and fingerprint 

filters, we test their performance with 2, 6, and 10 hash 

functions. We inspect 100 packets with random content 

against 10 pieces sensitive data at various lengths – there are a 

total of 1,625,600 fingerprints generated from the traffic and 

76,160 pieces of fingerprints from the sensitive data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We present the time for detection per packet in Fig. 3 (a). It 

shows that fingerprint filters run faster than Bloom filters, 

which is expected as Rabin fingerprint is easier to compute 

than MD5/SHA. The gap is not significant due to the fact that 

Python uses a virtualization architecture. We have the core 

hash computations implemented in Python C/C++ extension, 

but the remaining control flow and function call statements are 

in pure Python. The performance difference between Rabin 

fingerprint and MD5/SHA is largely masked by the runtime 

overhead spent on non-hash related operations.  
In Fig. 3 (a), the number of hash functions used in Bloom 

filters does not significantly impact their runtime, because only 

one hash function is operated in most cases for Bloom filters. 

Pybloom automatically chooses SHA-256 for Bloom filter with 

6 hash functions and SHA-384 for Bloom filter with 10 hash 

functions. One hash is sufficient to distinguish 32-bits 

fingerprints. MD5 is automatically chosen for the Bloom filter 

with 2 hash functions, which gives more collisions and the second 

hash could be involved. We speculate this is the reason why 

Bloom filter with 2 hashes is slower than Bloom filters with 6 or 

10 hashes. All of our fingerprint filters use 32-bit Rabin 

fingerprint functions. The small output space requires more than 

one hash for a membership test, so there is more significant 

overhead when a fingerprint filter is equipped with more hashes 

(6 vs. 2 and 10 vs. 6).  
The filter construction time is shown in Fig. 3 (b). It shares 

similar characteristics with the detection time. Filters with 

more hash functions require more time to initialize, because 

every hash function need to be computed. The construc-tion of 

fingerprint filters, especially assigning the irreducible 

polynomials p(x ) for each Rabin fingerprint, is written in pure 

Python, which is significantly slower than SHA-256 and SHA-

384 encapsulated using Python C/C++ extension.



C. Sizes of Fuzzy Sets vs. Fuzzy Length 
 

The size of fuzzy set corresponds to the K value in our 

definition of privacy goal. The higher K is, the more difficult it 

is for a DLD provider to infer the original sensitive data using 

our fuzzy fingerprinting mechanism – the fingerprint of the 

sensitive data hides among its neighboring fingerprints.  
We empirically evaluate the average size of the fuzzy set 

associated with a given fuzzy length with both Brown Corpus 
(text) and real-world network traffic (text & binary). 
 
• Brown Corpus: The Brown University Standard Corpus 

of Present-Day American English [24]. It contains 500 

samples of English text across 15 genres, and there are 

1,014,312 words in total.  
 

• Network traffic: 500MB Internet traffic dump collected 

by us on a single host. It includes a variety of network 

traffic: multimedia Internet surfing (images, video, etc.), 

binary downloading, software and system updates, user 

profile synchronization, etc.  
 

We aim to show the trend of how the fuzzy-set sizes changes 

with the fuzzy length, which can be used to select the optimal 

fuzzy length used in the algorithm. We compute 32-bit 

fingerprints from the datasets, and then count the number of 

neighbors for each fingerprint. Fig. 4 shows the estimated and 

observed sizes of fuzzy sets for fuzzy lengths in the range of [14, 

27] for 218,652 and 189,878 fingerprints generated from the 

Brown Corpus dataset and the network traffic dataset.  
The figure shows that the empirical results observed are very 

close with the expected values of the fuzzy set sizes computed 

based on our analysis in Section IV. This close fit also 

indicates the uniform distribution of the fingerprints.  
The fuzzy set is small when the fuzzy length is small, which 

is due to the sparsity nature of Rabin fingerprints. Given an 

estimated composition of traffic content, the data owner can 

use the result of this experiment to determine the optimal 

fuzzy length. In the datasets evaluated in the experiments, for 

fuzzy length of 26 and 27 bits, the K values are above 1,500 

and 3,000, respectively. Because the data owner can defuzzify 

in POSTPROCESS very quickly, the false positives can be sifted 

out by the data owner. We also find that for a fixed fuzzy 

length the distribution of fuzzy-set sizes follows a Gaussian 

distribution. Different datasets may have different K size 

characteristics. We demonstrate the feasibility of estimating 

the fuzzy set sizes, which illustrates how fuzzy fingerprintings 

can be used to realize a privacy goal.  
1) Summary: Our detection rates in terms of the number of 

sensitive packets found do not decrease much with the 

decreasing size of disclosed fingerprint sets in Fig. 2, even 

when only 10% of the sensitive-data fingerprints are used for 

detection. Our experiments evaluate several noisy conditions 

such as noise insertion – MediaWiki-based leak scenario, 

and data substitution – for the keylogger- and WordPress-

based leak scenarios. Our results indicate that our fingerprint 

filter can tolerate these three types of noises in the traffic to 

some degree. Our approach works well especially in the case 

where consecutive data blocks are leaked (i.e., local data 

features are preserved). When the noises spread across the 

 
data and destroy the local features (e.g., replacing every space 

with another character), the detection rate decreases as 

expected. The use of shorter shingles mitigates the problem, 

but it may increase false positives. How to improve the noise 

tolerance property in those conditions remains an open 

problem. Our fuzzy fingerprint mechanism supports the 

detection of data-leak at various sizes and granularities. We 

study the fuzzy set size and also verify the min-wise 

independence property of Rabin fingerprint, which are the 

building blocks of our fuzzy fingerprint method. 

 
VII. RELATED WORKS 

In existing paper designed, implemented, and 

evaluated with fuzzy fingerprint technique that enhances data 

privacy during data-leak detection operations. It is a 

straightforward realization of data-leak detection requires the 

plaintext sensitive data. In this paper Shingle with Rabin 

fingerprint was used for encrypting and identifying similar 

spam messages in a collaborative setting. It can also able to 

identify spam and virus present in the message. Our proposed 

fuzzy fingerprint method differs from these solutions and can 

enable its adopter to provide data leak detection as a service. 

So, the data provider or customer need is not to fully trust the 

Data Leakage Detection provider using our proposed 

approach. 

Besides our fingerprint-based detection, other 

approaches can also be applied to data-leak detection. If the 

sensitive data size is small and the patterns of all sensitive data 

are enumerable, string matching in network intrusion detection 

system can be used to detect data leaks. Our proposed 

approach can be used to detect data leaks. Another category of 

approaches for data-leak detection is tracing and enforcing the 

sensitive data flows. The provable privacy guarantees offered 

by our approach comes at a cost in terms of computational 

complexity and realization difficulty. 

DISADVANTAGES 

 It cost is very high 

 It has high computational complexity 

 It difficult in realization 

 
 

There have been several advances in understanding the 

privacy needs [25] or the privacy requirement of security 

applications [26]. In this paper, we identify the privacy needs  
in an outsourced data-leak detection service and provide 
a systematic solution to enable privacy-preserving 
DLD services.    

Shingle with Rabin fingerprint [15] was used previously  
for identifying similar spam messages in a collaborative 
setting [27], as well as collaborative worm containment [28], 

virus scan [29], and fragment detection [30].  
In comparison, we tackle the unique data-leak detection 



 
[42] provide string matching approaches in semi-honest 

environments, but keywords usually do not cover enough 

sensitive data segments for data-leak detection.  
Anomaly detection in network traffic can be used to detect 

data leaks. [5] detects any substantial increase in the amount 

of new information in the traffic, and entropy analysis is used 

in [43]. We present a signature-based model to detect data 

leaks and focus on the design that can be outsourced, thus the 

two approaches are different.  
Another category of approaches for data-leak detection is 

tracing and enforcing the sensitive data flows. The approaches 

include data flow and taint analysis [6], legal flow mark-ing 

[44], and file-descriptor sharing enforcement [8]. These 

approaches are different from ours because they do not aim to 

provide an remote service. However, pure network-based 

solution cannot handle maliciously encrypted traffic [45], and 

these methods are complementary to our approach in detecting 

different forms (e.g., encrypted) of data leaks.  
Besides our fuzzy fingerprint solution for data-leak detec-

tion, there are other privacy-preserving techniques invented 

for specific processes, e.g., DNA matching [46], or for general 

purpose use, e.g., secure multi-party computation (SMC). 

Similar to string matching methods discussed above, [46] uses 

anonymous automata to perform comparison. SMC [47] is a 

cryptographic mechanism, which supports a wide range of  
fundamental arithmetic, set, and string operations as 
well as complex functions such as knapsack computa-  
tion [48], automated trouble-shooting [49], network event 

statistics [50], [51], private information retrieval [52] genomic 

computation [53], private database query [54], private join 

operations [55], and distributed data mining [56]. The provable 

privacy guarantees offered by SMC comes at a cost in terms of 

computational complexity and realization difficulty. The advantage 

of our approach is its concision and efficiency 

 
VII. CONCLUSIONS AND FUTURE WORK 

 
Our data-leak detection method supports practical data-leak 

detection as a service and minimizes the knowledge that a DLD 

provider may gain during the process. In this paper we present 

SIMON-SPECK encryption algorithm for data leakage detection and 

identification model. By using with a special encryption algorithm, 

the exposure of the sensitive data is kept to a minimum during the 

detection. Since SIMON-SPECK algorithm uses the small key size 

and offers most security against multiple attacks. In this paper we 

listed the six operations executed by the data owner and the DLD 

provider in our protocol. The protocol is based on strategically 

computing data similarity, specifically the quantitative similarity 

between the sensitive information and the observed network traffic. 
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