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Abstract— The main objective of this project is to propose a new 

technique for the classification of intracardiac tumor and 

thrombi in the echocardiograms. The whole method is based on 

the sparse representation. The mass area in ROI is automatic 

defined by a coarse-to-fine strategy. A novel globally denoising 

approach combing the K-SVD and the NLM is employed to 

eliminate the speckle. The globally despeckling algorithm yields 

better noise attenuation and edge enhancement, without 

destroying the important cardiac structures. The K-SVD and a 

modified ACM with a new external force are applied to segment 

the mass. The proposed detected contours closely approximate 

the manually traced ones. Nine features, including the 

cardiologist’s original selected features and new texture 

characteristics are then extracted. They are capable of 

distinguishing two masses, whose values are identical with the 

clinical observations. Finally, all features are implemented to the 

SRC. The better accuracy and simple implementation make the 

proposed method beneficial to help the cardiologists make a 

diagnosis before the surgery 

   

Keywords— Despeckling, Intracardiac Masses, K-SVD, NLM and 

Spase Representation 

 

I.  INTRODUCTION  

     Intracardiac masses are hazardous in cardiovascular 

disease. Generally, they are abnormal structures within or 

immediately adjacent to the heart, which must be 

distinguished for diagnosis. Two main types of intracardiac 

masses are tumor and thrombus. Primary cardiac tumors are 

rare entities. Approximately 75% of them in adults are benign, 

with the majority composed of myxomas. Cardiac tumors may 

cause obstruction to the left ventricular filling. Patients are 

present with the embolization intracardiac obstruction and 

constitutional sighs. Because of the high risk of embolization 

and sudden death, the tumors need prompt resection. 

Intracardiac thrombi are seen in a variety of clinical settings 

and can result in severe morbidity or even death from embolic 

events. They can occur following myocardial infarction with 

ventricular thrombus formation, or with a trial 

fibrillation and mitral stenosis  where atrial thrombi 

predominate. Thrombi in the chambers of the left heart are a 

common source of complications like stroke and other arterial 

embolic syndromes. 

Although intracardiac tumors and thrombi are different in 

pathology, they behave similarly in echocardiography. Often, 

they are misinterpreted. In most hospitals, echocardiographic 

identifications are carried out by cardiologists manually. The 

diagnosis is time-consuming. Recognition depends on the 

image quality and techniques, as well as the cardiologist’s 

experience. Hence, the demand for an automatic classification 

is increasing, which is potential to improve the diagnostic 

accuracy and to guide which case should be recommended for 

a surgery. The ultrasound image analysis has been 

successfully employed in the computer-aided diagnosis for 

cardiovascular disease, such as revealing valuable ultrasound 

features in early stroke prediction, designing fuzzy rule-based 

decision support system in the diagnosis of coronary artery, 

and applying adaptive block matching methodologies in 

carotid artery wall and plaque dynamics. Nevertheless, it is 

still challenging in intracardiac masses identification due to 

the similar echo cardiographic appearances of two masses and 

the suboptimal image quality including large amount of 

speckle noise, signal drop-out, artifacts, and missing contours. 

So a novel method is required  to classify the intracardiac 

tumor and thrombi in echocardiograms. 

      

     In most hospitals, echo cardiographic identifications are 

carried out by cardiologists manually. The diagnosis is time-

consuming. Recognition depends on the image quality and 

techniques, as well as the cardiologist’s experience. Hence, the 

demand for an automatic classification is increasing, which is 

potential to improve the diagnostic accuracy and to guide 

which case should be recommended for a surgery. The 

ultrasound image analysis has been successfully employed in 

the computer-aided diagnosis for cardiovascular disease, such 

as revealing valuable ultrasound features in early stroke 

prediction [7], designing fuzzy rule-based decision support 

system in the diagnosis of coronary artery [8], and applying 

adaptive block matching methodologies in carotid artery wall 

and plaque dynamics [9]. Nevertheless, it is still challenging in 

intracardiac masses identification due to the similar 
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echocardiographic appearances of two masses and the 

suboptimal image quality including large amount of speckle 

noise, signal drop-out, artifacts, and missing contours. 

Strzelecki et al. used a neural network to classify and segment 

different intracardiac masses in tumor echocardiograms in a 

semiautomatic manner [10]. However, to the best of our 

knowledge, a fully automatic classification method has not 

been previously reported in the area of distinguishing 

intracardiac masses in echocardiograms.  

     Typically, this kind of classification methods is composed 

of four parts including despeckling, segmentation, feature 

extraction, and classification. Unlike the additive, white and 

Gaussian (AWG) noise, the speckle in the ultrasound image is 

a multiplicative noise, whose texture often carries useful 

anatomical information. To achieve the best diagnosis, it is 

essential to despeckle the images without affecting important 

image features and destroying anatomical details. Various 

methods have been used in the ultrasound image despeckling, 

such as the local statistics [11]–[13], the median filter [14], the 

speckle reducing anisotropic diffusion (SRAD) [15], [16], and 

the wavelet-based methods [17]. As locally based methods, 

they compromise between the averaging (in homogeneous 

regions) and preserving (at edges and features). These filters 

are capable of suppressing the speckle, but they remove fine 

details as well. As for the segmentation, the active contour 

model (ACM) [18], the level set [19], the active appearance 

model (AAM) [20], the fuzzy based methods [21], and the 

graph cut [22] have been evaluated. While these methods may 

be effective for specific types of images, they are 

unsatisfactory in the intracardiac mass segmentation owing to 

the movement of cardiac chamber during the cardiac cycle. In 

the systolic stage, the chamber shrinks so small that it is filled 

with an intracardiac mass, with the atrial wall and the mass 

boundary overlapped. Considerable efforts have been made on 

the application of the computer aided classification, like the 

multilayer feedforward artificial neural network (ANN) [10], 

the back propagation neural network (BPNN) [23], the support 

vector machine (SVM) [24], and the ensemble learning [25]. 

Most of these classifiers require training stages and 

supervision from experienced cardiologists. Therefore, it is 

meaningful to find a stable classifier with a great capacity of 

generalization without any training process. In recent years, 

there has been a growing interest in sparse representation. The 

sparse concept originated from the transform domain methods, 

which assumed that true signals could be sparsely represented 

by a linear combination of few basis elements in the transform 

domain. Instead of using fixed and orthogonal transforms, 

images can be described by sparse linear combinations of an 

over complete dictionary. Applications of the sparse 

representation include denoising [26], [27], compression [28], 

regularization in inverse problems [29], [30], and 

classification [31]. The K-singular value decomposition 

(KSVD) is one of the typical methods in the sparse 

representation, which utilizes over complete dictionaries 

obtained from a preliminary training procedure [26]. 

 
     This paper compares the performance of three method 

which are used to convert 2D image into 3D image. The 2D to 

3D conversion technique plays a crucial role in the 
development and promotion of three dimensional television 
(3DTV) for it can provide adequate supply of high-quality 3D 
program material. In this paper three methods are analyzed 
and their performance are compared to find the best method to 
produce 3D image with high quality. The first method convert 
2D image into 3D based on the depth map with edge 
information. The second method use fusion based depth map 
information. Finally the third method generate 2D image using 
random walk algorithm. To analyse the performance of these 
method several performance metrics are used. This paper uses 
PSNR,SSIM, MSE and RMSE to analyses the performance. 
From the experimental results it is shown that the Random 
Walk method performs better than the other two methods. 

   

        The remainder of the paper is organized as follows: In 

Section II, the overview of proposed method is presented. In 

Section III,   the proposed method is specifically depicted, 

including its design idea and practical implementation 

approach. In Section IV, the performance of the proposed 

method is evaluated. Finally, conclusions are made in Section 

V. 

II. TUMOR OR THROMBI CLASSIFICATION FROM 

ECHOCARDIOGRAPHIC IMAGES     

     The overall block diagram of the proposed method is 

shown in Fig.1.It involves the frame decomposition, automatic 

region of interests(ROIs) selection, globally despeckling, 

intracardiac mass segmentation, feature extraction, and 

classification. The further details of these modules are 

discussed below: 
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Fig. 1. Overall Block Diagram of Proposed Methods 
 

III. TUMOR OR THROMBI DETECTION AND CLASSIFICATION 

PRCODURE 

     The proposed method have six modules. They are 

1. Frame Decomposition 

2. Automatic ROI Selection 

3. Global Despeckling  

4. Segmentation 

5. Feature Extraction 

6. Sparse Representation Classification 

 

A. Frame Decomposition:  

 This is the first module of this project. The 

cardiologists acquire echocardiogram sequences when 

diagnosing the disease. To segment the intracardiac mass and 

evaluate its movement, the echo cardio graphic sequences are 

divided into consecutive frames beforehand. The typical 

duration of an echocardiogram sequence is about 3–4 s. The 

frame rate is 39 frames per second. Each decomposed frame is 

480 × 640pixels. 

 Besides the scanned region, an echocardiogram 

depicts texts and labels, containing information about the 

patient and scanning transducer. Compared with moving heart 

in two successive frames, these texts and labels are static. 

After subtraction of two successive frames, the static 

information are all removed, while the sector scanned region 

containing moving heart is remained. Then, the profile of the 

sector scanned region is detected and a rectangle covering the 

sector is identified. Finally, the original image is cropped to 

keep the scanned region for further analysis. 

B. Automatic ROI Selection:  

 

 After frame decomposition, the next step is to select 

ROI automatically. In order to focus on the mass area, a ROI 

containing the mass and its surrounding tissues are defined. A 

coarse-to-fine iteration strategy for sub windows clustering is 

applied to automatically select the ROI. The cardiac chamber 

owns unique texture features, with lower intensities and 

uniformed distributions. Such intensity differences help to 

assort the images into two classes: the uniform areas 

(chamber) and the texture areas (the mass or the myocardium). 

 The size of the initial sub windows is 40 × 40. Each 

time, several texture features of sub windows, including the 

mean, the variance, and the gray level co-occurrence matrix 

(GLCM) [33] are calculated and input into a fuzzy K-means 

algorithm to cluster the similar sub windows. The uniform sub 

windows in a coarse position, which, in turn, are searched to 

get a fine position with half size of sub windows. The iteration 

ends when all remaining sub windows share the same intensity 

distribution. In a short axis view echocardiogram, the chamber 

usually lies near the cardiac center. So in the fine position, the 

Euclidian distance between each sub window and the cardiac 

center is computed to trim off far-away windows and obtain 

final chamber location. The distance threshold is specified as 

80pixels by experienced cardiologists. 

C. Global Despeckling 
 After ROI Selection the next step is to despeckle the 

global noise. For ultrasound images, the speckle is a Rayleigh-

distributed multiplicative noise. It degrades the contrast 

resolution, limiting the detect ability of small, low-contrast 

lesions. Different from locally based denoising methods, the 

NLM extends the “neighborhood” to the “whole image,” 

taking advantage of the high degree of redundancy in an 

image. Usually for a fixed configuration, many similar 

samples can be found in the whole image. With the help of 

these related patches in far-away areas, rather than the 

irrelevant ones in local neighborhood, the denoising 

performance will be greatly improved, especially in the edge 

preservation. The K-SVD makes the over complete dictionary 

D containing two kinds of atoms with different sparse 

coefficients. For the texture area, their coefficients have a 

small number of non zeros, while the coefficients of the 

homogeneous areas are all zeros. 

D. Segmentation 

 This is the fourth module of this project. As the basis 

for the further features extraction, extracting the boundary of 

the mass is of great importance. Since the intracardiac mass 

has a base connected with the a trial wall, the mass and the a 

trial wall should be segmented together. The cardiac chamber 

and the mass or atrial wall share different intensities. The over 

complete dictionary D in the K-SVD can discriminate. These 

two areas by two types of atoms, corresponding to the texture 

area (intracardiac mass and the a trial wall) and the 

homogeneous area (cardiac chamber). Here, X_sum is also 

used to distinguish two areas and convert the original image 

into a binary one in which the intensities of the homogeneous 

areas. 

 After that ACM is applied. The ACM is well-known 

for image segmentation. It is based on curve evolution and 

energy function minimization, moving in reaction to two 

components: the internal forces and the external forces. The 

internal forces impose constraints on the contour itself, while 

the external forces push the contour toward image features. 

E. Feature Extraction 

 When identifying intracardiac mass in an 

echocardiogram sequence, usually the cardiologists make the 

judgment based on two rules: the motion feature (the mass 

movement) and the boundary feature (the base length). 

Although two masses show differences in echo reflections, 

texture characteristics are visually indistinguishable due to the 

poor image quality.  

 They are always omitted clinically. However, texture 

features, especially the mass internal echo is quite important in 

the classification. Here, for each segmented mass, three types 

of features are computed: the motion feature, the boundary 

feature, and the proposed texture features. The motion feature 

is a primary factor in mass recognition. During a cardiac 

cycle, intracardiac tumors show high degree of mobility, while 

the thrombi stay motionless. 
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 Another essential boundary feature is the base length. 

An intracardiac tumor has a narrow stalk connected to the a 

trial wall, whereas a thrombus lies entirely on the wall. The 

overlap length of these two masses with the a trial wall is 

different. Here, the base length is the Euclidian distance 

between two mass–a trial separation points. The base length of 

a thrombus is much longer than that of a tumor. In addition, 

texture characteristics derived within the mass are also 

considered. Three kinds of texture features are extracted. The 

GLCM is a common method for the texture feature analysis. 

Five features derived from the GLCM (contrast, entropy, 

autocorrelation, energy and homogeneity) are computed at θ 

=0◦, 45◦ , 90◦ , and 135◦ and d = 1. The mean intensity inside 

the mass could also potentially classify the homogenous and 

inhomogeneous areas. The GLCM features and the mean 

intensity are the traditional texture descriptors. Furthermore, 

the mean sparse coefficient is introduced as a new texture 

feature for a better classification. The sparse coefficients 

represent the 

integrative information of the local statistics in a mass. A total 

of nine features: the mass movement, the base length, five 

GLCM features, the mean intensity and the mean sparse 

coefficient are calculated for the further classification. 

G. Sparse Representation Classification 

 A sparse representation-based classifier (SRC) is 

used to identify an intracardiac mass. It relies on the idea that 

the test sample can be represented as a linear combination of 

the training sample. Different from other classifiers, the SRC 

is a non parametric learning method which does not need a 

training process 

but only need the training data. 

 

IV. PERFORMANCE ANALYSIS 

A. Expiremental Images 

     A total of 10 clinical echocardiogram sequences were 

collected at Department of Echocardiography, Arthi Scan 

Centre, Tirunelvelli, Tamilnadu India. They were recorded 

using the Philips iE33ultrasound imaging system equipped 

with a S5-1 transducer(imaging bandwidth from 1 to 5 MHz). 

The sequences were saved in AVI format. The whole 

classification method was applied on the sequences after they 

were recorded and stored by the cardiologists. All patients 

were submitted to surgery. The histopathology of the masses 

proved that 5 sequences were intracardiac thrombi and 5 were 

intracardiac tumors. 

 

    
                   (a)                                            (b) 
       

     
               (c)                                            (d) 
     

Fig. 4. Expiremental Images   

 

B. Performance Analysis 

To evaluate the performance of the classify the intracardiac 

tumor and thrombi techniques several performance metrics are 

available. This project uses the overall accuracy (ACC), 

precision rate, the sensitivity (SEN), the specificity (SPE), the 

positive predicative value (PPV), and the negative predictive 

value (NPV) to analyses the performance. 

 

Overall Accuracy 

 Overall Accuracy is the measurement system, which 

measure the degree of closeness of measurement between the 

original intracardiac tumor and thrombi and the detected 

intracardiac tumor and thrombi by the proposed method. 

ACC =  
TP

TP + FN + FP + TN
 

 

Where, TP – True Positive (equivalent with hit) 

FN – False Negative (equivalent with miss) 

TN – True Negative (equivalent with correct rejection) 

FP – False Positive (equivalent with false alarm) 

 

Sensitivity 

The sensitivity is the fraction of retrieved instances that are 

relevant to the find. 

SEN =  
TP

TP + FN
 

 

Where TP = True Positive (Equivalent with Hits) 

FN = False Negative (equivalent with miss) 

 

 Specificity 

The specificity is the fraction of relevant instances that are 

retrieved according to the query. 

SPE =  
TP

FP + TN
 

 

Where FP = False Positive (equivalent with false alarm) 

TN = True Negative (equivalent with correct rejection) 

TP – True Positive (equivalent with hit) 

 Positive Predictive Value 

 Positive Predictive Value is one of the performance 

metric which is used to analyse the performance of the classify 

the intracardiac tumor and thrombi techniques. The PPV can 

be calculated as, 
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PPV = (1 + α) ∗
TP

TP + FP
 

 

Where TP – True Positive (equivalent with hit) 

FP = False Positive (equivalent with false alarm) 

 Negative Predictive Value 

 Negative Predictive Value is one of the performance 

metric which is used to analyse the performance of the classify 

the intracardiac tumor and thrombi techniques. The NPV can 

be calculated as, 

 

NPV =  
TN

TN + FN
 

 

Where TN = True Negative (equivalent with correct rejection) 

FP = False Positive (equivalent with false alarm) 

FN = False Negative (equivalent with miss) 

 

     To analysis the performance of the three methods by using 

the performance metrics which are mentioned above. This is 

shown in the below tables and graphs 

 

Classification Methods ACC 

SRC 95.32 

SVM 94.13 

BPNN 93.39 

ANN 93.24 

Adaboost 92.53 

Navie Bayes 93.46 

 

 
 

 

Classification Methods SEN 

SRC 95.91 

SVM 94.56 

BPNN 92.43 

ANN 92.35 

Adaboost 91.43 

Navie Bayes 92.45 

 

 
 

Classification Methods SPE 

SRC 90.9 

SVM 89.32 

BPNN 88.26 

ANN 88.26 

Adaboost 87.04 

Navie Bayes 88.51 

 

 
 

 

Classification Methods PPV 

SRC 91.35 

SVM 90.34 

BPNN 89.75 

ANN 89.54 

Adaboost 88.62 

Navie Bayes 89.48 
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Classification Methods NPV 

SRC 100 

SVM 99.34 

BPNN 98.72 

ANN 98.52 

Adaboost 97.04 

Navie Bayes 98.61 

 

 

 
 

Classification Methods Runtime 

SRC 0.943 

SVM 6.326 

BPNN 8.218 

ANN 8.432 

Adaboost 8.763 

Navie Bayes 6.448 

 

 

 
 

V. CONCLUSION 

     In this project, a new method is proposed for the 

classification of intracardiac tumor and thrombi in the 

echocardiograms. The whole method is based on the sparse 

representation. The massarea in ROI is automatic defined by a 

coarse-to-fine strategy. A novel globally denoising approach 

combing the K-SVD and the NLM is employed to eliminate 

the speckle. The globally despeckling algorithm yields better 

noise attenuation and edge enhancement, without destroying 

the important cardiac structures. The K-SVD and a modified 

ACM with a new external force are applied to segment the 

mass. The proposed detected contours closely approximate the 

manually traced ones. Nine features, including the 

cardiologist’s original selected features and new texture 

characteristics are then extracted. They are capable of 

distinguishing two masses, whose values are identical with the 

clinical observations. Finally, all features are implemented to 

the SRC. The better accuracy and simple implementation 

make the proposed method beneficial to help the cardiologists 

make a diagnosis before the surgery. 
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