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ABSTRACT 

 

Automated magnetic resonance 

imaging (MRI) segmentation systems 

classify brain voxels into one of three main 

tissue types: gray matter (Gm), white 

matter (Wm), and Cerebro-spinal fluid 

(Csf). In the existing methods 

segmentation was done based on the 

intensity value of the voxels. Local signal 

perturbations caused by additive noise and 

multiplicative bias-fields are responsible 

for cluster overlaps in the intensity feature 

space resulting in poor tissue-class 

separability. Hence an adaptive mean-shift 

methodology is utilized in order to classify 

brain voxels where the MRI image space is 

represented by a high-dimensional feature 

space that includes multimodal intensity 

features as well as spatial features. This 

proposed method clusters the joint spatial-

intensity feature space, thus extracting a 

representative set of high-density points 

within the feature space, otherwise known 

as modes. Due to its nonparametric nature, 

adaptive mean-shift can deal successfully 

with nonconvex clusters and produce 

convergence modes that are better 

candidates for intensity based 

classification than the initial voxels.  

 

1. INTRODUCTION 

 

Image segmentation is one of the 

most important steps leading to the 

analysis of processed image data. The 

result of the image segmentation is a set of 

regions that collectively cover the image, 

or a set of contour extracted from the 

image. Each of the pixels in the region are 

similar with respect to some characteristics 

or computer property such as colour, 

intensity or texture.  

MRI is primarily used in medical 

imaging to visualize the structure and 

function of the body. In our project an 

automated scheme for magnetic resonance 

imaging (MRI) Brain segmentation is 

proposed. An adaptive mean shift 

methodology is utilized in order to classify 

brain voxels into one of the three main 

tissue types: Gray matter, White matter, 

Cerebrospinal fluid.  

 

2. EXISTING TECHNIQUES 

 

 Both supervised and 

unsupervised approaches have been used 

for this task. 

 

2.1 Supervised Approach 

  

 In the supervised approach, 

intensity values of labeled voxel samples 

from each tissue (prototypes) must be 

provided during the learning phase. In a 

subsequent classification phase, unlabeled 

voxels are classified using a selected 

classifier. This method requires human 

interaction to select the prototypes and is 

therefore semi-automatic. To avoid re-

training the classifier for each new scan, 

methods are required to normalize the 

intensity between MRI scans. 
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2.1 Unsupervised approach 

 

 Unsupervised approaches often 

rely on a Gaussian approximation of the 

voxel intensity distribution for each tissue 

type. This is due to the Rican behavior of 

the noise present in the MRI intensity 

signal. In this technique, a Gaussian 

mixture model (GMM) is fitted to the 

voxels intensity using the expectation-

maximization (EM) algorithm , following 

which every voxel is assigned to the tissue 

class for which it gives the highest 

probability.  

 

Disadvantages 

 

 However, using intensity 

information alone has proven to be 

insufficient for a reliable automated 

segmentation of the brain tissues. Local 

signal perturbations caused by additive 

noise and multiplicative bias-fields, are 

responsible for cluster overlaps in the 

intensity feature space, resulting in poor 

tissue-class separability.  

 

3. PROPOSED ALGORITHM 

 

3.1 Adaptive mean shift algorithm 

 

 Our proposed algorithm is based on 

a variation of the mean-shift algorithm, 

termed the adaptive mean-shift algorithm. 

By assigning a distinct bandwidth to every 

data point, the adaptive mean-shift allows 

for increased sensitivity to local data 

structure even in a higher dimensional 

feature space corresponding to multimodal 

MRI. 

Let,                         

, be the 

set of feature vectors in a -dimensional 

feature space. The density at point x can be 

estimated by the Parzen window Kernel 

density estimator 

       (1) 
where function k, 0<=x<=1 , is called the 

profile of the spherically symmetric kernel 

K with bounded support, that satisfies                   

 
Ck,d is a normalization constant that makes 

K(x) integrate to one. In (1), hi >0 is called 

the kernel bandwidth or window size, and 

determines the range of influence of the 

kernel located xi. In this work, the 

following kernel is used 

 
which is the Epanechnikov kernel that 

minimizes the mean integrated square 

error (MISE) between the underlying 

probability density function of the data and 

the kernel density estimation. Provided 

that the k ‘(x) derivative of k(x) exists, the 

function g(x) = -k’(x) can be defined with 

the associated kernel  

                G(x) =cg,d g(││x││2) 

It can be shown that taking the gradient of 

(1) leads to the following expression 

 

         
Where C is a positive constant and 

the right-hand side is the mean-shift 

vector. From (4) we see that the mean-shift 

vector is proportional to the normalized 

gradient of the density estimate computed 

for kernel K.  Starting from point x (j) in 

feature space, moves the mean-shift vector 

to a point x (j+1) that lies in a higher density 

region than x (j), computed as follows

 

 
From (4) that the mean-shift vector 

length is modulated by the inverse of the 
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kernel density estimation with kernel G. 

Therefore, as we move towards higher 

density regions along the mean-shift 

vector, its length gradually decreases. By 

repeating iteratively for j=1, 2…., we 

progressively climb to the nearest 

stationary point of the probability density 

function which is usually also one of its 

local maxima or “modes.”  

Adaptive mean-shift (AMS) 

clustering has been shown to produce 

better results than the fixed bandwidth 

algorithm especially in high dimensional 

feature spaces. Many methods exist to 

determine an adaptive window size for the 

AMS algorithm .A simple method is to 

define the window size as the distance, hi, 

between xi and its k -nearest neighbor xi, k 

         (6) 
4. ALGORITHM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 ALGORITHM DESCRIPTION 

4.1.1 Step 1:Preprocessing 

 

The adaptive mean-shift algorithm (AMS) 

is utilized to analyze multimodal MRI data 

and provide segmentation maps of the 

three main tissue type’s Gray matter, 

White matter and cerebro spinal fluid. One 

to four MRI modalities are available per 

segmentation task. Standard preprocessing 

steps include: Brain parenchyma extraction 

using the brain extraction tool (BET). The 

obtained brain masks were visually 

inspected and corrected for outliers when 

needed. When a binary mask was available 

from the dataset, it was used instead of 

applying BET. Christo Ananth et al. [3] 

discussed about Vision based Path 

Planning and Tracking control using 

Mobile Robot. This paper proposes a novel 

methodology for autonomous mobile robot 

navigation utilizing the concept of tracking 

control. Vision-based path planning and 

subsequent tracking are performed by 

utilizing proposed stable adaptive state 

feedback fuzzy tracking controllers 

designed using the Lyapunov theory and 

particle-swarm-optimization (PSO)-based 

hybrid approaches. The objective is to 

design two self-adaptive fuzzy controllers, 

for x-direction and y-direction movements, 

optimizing both its structures and free 

parameters, such that the designed 

controllers can guarantee desired stability 

and, simultaneously, can provide 

satisfactory tracking performance for the 

vision-based navigation of mobile robot. 

The design methodology for the 

controllers simultaneously utilizes the 

global search capability of PSO and 

Lyapunovtheory-based local search 

method, thus providing a high degree of 

automation. Two different variants of 

hybrid approaches have been employed in 

this work. The proposed schemes have 

been implemented in both simulation and 

experimentations with a real robot, and the 

Multimodal MRI 

Preprocessing 

Joint spatial intensity feature 

vectors 

Adaptive mean shift clustering 

Modes list 

Iterative mode pruning 

Pruned modes list 

Voxel weighed clustering of modes intensity 

GM, WM, CSF segmentation 

map 
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results demonstrate the usefulness of the 

proposed concept. 

 

4.1.2 Step 2: Extraction of feature 

vectors 

 

            Following the initial data 

processing, feature-vectors are extracted 

per input voxel. Intensity as well as spatial 

features (voxel coordinates) is used, for an 

overall dimensionality of 3+n, where n is 

the number of input intensity channels 

(modalities). The set of feature-vectors is 

input to the adaptive mean-shift clustering 

stage of the framework. The feature 

vectors used as the inout are: 

The normalized color rgb   

 r = R/(R+G+B) 

g = G/(R+G+B) 

The opponent colour space   

O1 (R, G, B) =(R-G)/2 

O2 (R,G, B) = (2B-R-G)/4 

 

The hue  

     (7) 
The uncertainity of normalised coordinates 

 (8) 
The uncertainty of o1 and o2 

                 (9) 
The uncertainty of hue 

     (10) 
4.1.3 Step 3: Adaptive mean shift 

clustering 

 

 The process starts by clustering the 

input feature vectors, which represent the 

multimodal MRI brain data using the AMS 

algorithm. The feature vectors used in this 

project are normalized colour, opponent 

colour space, and hue, uncertainity of 

normalized colour coordinates, 

uncertainity of hue and uncertainity of 

opponent colour space. A bandwidth 

value, hi is associated with each feature 

vector xi , using ,  

         (11) 
Where hi is taken as the L1 distance 

between xi and its k-nearest neighbor. A 

constant value of K=4 is used .The 

adaptive mean-shift clustering is initiated 

from each feature point xi using the above 

expression, and the convergence points are 

saved. An internal representation of 16 bits 

is used; thus, convergence points that 

result in the same number at working 

precision are assigned to the same mode. 

At this stage, each feature vector bears the 

label of its convergence mode, or cluster. 

Each mode obtained by the clustering 

process expresses the local structure of the 

data in a given region of the feature space. 

It should be emphasized that modes define 

clusters of arbitrary shape, without any 

convexity constraints. The number of 

obtained modes is an output of the mean-

shift algorithm. It depends on the window 

sizes, as well as the data considered. In this 

project the initial voxels is reduced into 

eight modes. 

 

 

 

4.1.4 Step 4: Iterative mode pruning 

The number of modes is a large 

compression of the initial data but it is still 

much larger than the targeted number of 

classes. A mode pruning step is therefore 

required. In fact, we have used the 

nonparametric adaptive mean-shift for 

clustering in the joint spatial-intensity 

feature space as the clusters are inherently 

nonconvex.  
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For the pruning of the modes 

however an intensity-only feature space 

for which clusters can be conveniently 

approximated as convex, enabling the use 

of parametric models (i.e., multivariate 

Gaussians). For this purpose, a pruning 

mechanism is added as follows. A fixed-

radius window is shifted across the 

intensity feature space (ignoring spatial 

features), centered on each mode. Modes 

that co-exist within the window are 

merged. Mahalanobis distance is utilized 

for the distance computation. For the 

computation of the Mahalanobis distance, 

a covariance matrix is computed per mode 

from the intensity values of its 

corresponding voxels. As each mode has a 

distinctive (N*N) 2 covariance matrix, the 

Mahalanobis distance is usually not 

symmetric. Therefore, for two intensity 

vectors, Im and In , representing the 

intensity components for two convergence 

modes, m and n , respectively, m and n are 

merged if 

(12) 

Where MD (Im, In) is the 

Mahalanobis distance between vectors Im 

and In, and Ris the window radius. The 

process is repeated iteratively with an 

increasing window radius R, and updated 

covariance matrices (for the merged 

modes). Empirically, the initial window 

size, as well as its increment between 

iterations, is set to 1. In theory, the pruning 

process could proceed until the number of 

pruned modes reaches the number of 

desired classes. In practice, as pruning 

proceeds, merged modes represent voxel 

sets with growing intensity spread. In the 

multimodal case, the variances of the 

modes for each intensity channel are 

extracted from the covariance matrices and 

tested for the same threshold.  

          It was chosen empirically as it is still 

small enough with regards to the standard 

deviation of Gm, Wm, Csf intensity 

signals in real MRI data, but large enough 

to allow for a significant intensity pruning.  

 

4.1.5 Step 5: Voxel-weighted Clustering 

of Modes Intensity 

 

The remaining modes are assigned 

to the three desired tissue classes by 

clustering their intensity values using the 

K–means clustering algorithm (K=3). 

Each mode may represent a different 

number of voxels. To account for this fact, 

the standard K-means updating step for 

each centroid, Mi (i=1….3), is replaced by 

a weighted mean 

  (13) 

where the intensity vector Im, for each 

mode  m assigned to class I , is weighted 

by wm , the relative portion of the total 

number of voxels it represents. The 

resulting procedure is termed 

“voxelweighted” K-means. A 

correspondence between the three 

extracted clusters and the three tissue types 

is obtained by using prior knowledge on 

tissue intensity ordering in MRI 

modalities. For example, in Pd-weighted 

images Wm, Gm, and Csf correspond to 

the darkest, less-dark and brightest 

clusters, respectively. Based on the defined 

correspondence, each mode and its 

associated voxels is assigned to a tissue, 

thus producing the final segmentation 

map.  The underlying idea of this second 

merging step is that by acting in the joint 

spatial-intensity domain mean-shift brings 

together many voxels with potentially 

significant intensity variations into a few 

modes that are located in high-density 

regions of the feature-space, close to 

cluster centers. Mode intensities can be 

seen as “filtered” values for the original 

voxels and are less contaminated by 

outliers. Therefore, modes can now be 

classified using intensity information 

alone. Christo Ananth et al. [4] discussed 

about  a model, a new model is designed 
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for boundary detection and applied it to 

object segmentation problem in medical 

images. Our edge following technique 

incorporates a vector image model and the 

edge map information. The proposed 

technique was applied to detect the object 

boundaries in several types of noisy 

images where the ill-defined edges were 

encountered. The proposed techniques 

performances on object segmentation and 

computation time were evaluated by 

comparing with the popular methods, i.e., 

the ACM, GVF snake models. Several 

synthetic noisy images were created and 

tested. The method is successfully tested in 

different types of medical images 

including aortas in cardiovascular MR 

images, and heart in CT images. 

 

5. SOFTWARE DESCRIPTION 

 

MATLAB is an integrated 

technical computing environment that 

combines numeric computation, advanced 

graphics and visualization, and a high-

level programming language. MATLAB is 

an ambitious program. It contains 

hundreds of commands to do mathematics. 

One can use it to graph functions, solve 

equations, perform statistical tests, and do 

much more. It is a high-level programming 

language that can communicate with its 

cousins, e.g., FORTRAN and C. we can 

produce sound and animate graphics. We 

can do simulations and modeling.  

 

6. OUTPUT 

 

6.1 Segmentation results for various 

inputs 

 
     Input        Adaptive mean shift      K means clustering      Fuzzy C     

                                                                                                       means 

 

 

 
Fig 3: Segmentation results for various inputs 

 

6.2 Bandwidth selection results 

 
Bandwidth = 6                                                                                                

    
Adaptive mean shift  K means clustering       Fuzzy C means  

clustering      
 

 
 

Bandwidth = 9 

 
 
Bandwidth = 10.5 

 

 
 

Fig 4: Bandwidth selection results 

 

 
Fig 6: fitness value Vs iteration 

 

7. CONCLUSION 
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An automated segmentation 

framework for brain MRI volumes based 

on adaptive mean-shift clustering in the 

joint spatial and intensity feature space is 

presented. Mean shift algorithm alone 

cannot produce better result. So in this 

project along with mean shift K means or 

fuzzy C means are used in order to 

improve the segmentation results. The 

advantage over intensity based schemes 

has been shown in the output. Moreover, 

by using the adaptive mean-shift instead of 

the constant bandwidth algorithm, we 

ensure an appropriate bandwidth value for 

each feature point without requiring per-

dataset manual tuning.  

 

8. FUTURE WORK 

 

The current bandwidth selection 

algorithm based on the k–nearest neighbor 

makes no use of application specific 

information. Edge information, for 

instance, could help define the region of 

influence of a kernel by a given point since 

edges generally delimit regions 

corresponding to different tissue types. 

The proposed framework will be extended 

to incorporate the detection of abnormal 

tissues such as sclerotic lesions and 

tumors.  
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