
 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)
 Vol. 2, Issue 9, September 2016

Amutha A L et al © IJARBEST PUBLICATIONS

 A Study and Simulation of Membrane Hierarchy

with Dynamic Parallelism using CUDA
Amutha A L1, Dorathi Jayaseeli J D2, Dr. Malathi D3

Assistant Professor, CSE Department, SRM University, Chennai, India 1

Assistant Professor, CSE Department, SRM University, Chennai, India 2

Professor, CSE Department, SRM University, Chennai, India 3

Abstract— Membrane computing is on FastTrack in the field of

parallelism. It is a bio-inspired computing that implements the

working of the parallel model of membranes. This parallelism is

not stable on CPU. Hence the computation is simulated using

GPU computing and developing tool CUDA. NVIDIA CUDA has

Dynamic parallelism with nesting the kernels and blocks that can

be executed on parallel manner leveraging the concept on

membrane computing. As concern with the hierarchy of the

membrane, Dynamic parallelism plays important role. With help

of SIMD architecture of CUDA simulation of parallelism of

membrane computing in true sense can be implied.

Index Terms— Bio-inspired computing, CUDA, Dynamic

Parallelism and Membrane Computing.

I. INTRODUCTION

A. Bio-Inspired Computing

Nature has always inspired human life, may it be social or

artificial. There are many computationally hard problems that

have been faced for the entire implementation of the

technology. It inspires to analyze the working pattern of the

biological techniques in the surrounding and estimating the

processing model. The artificial electronic devices are

manmade, and they have limitation over the time optimization

and the components that build them. Computation at the

molecular level has higher complexity level. They are

considered to be virtual components for information process

device. There had been challenges designed based on the

specific enzymes on DNA. L. Adleman [6] had experimented

in the laboratory for the solution of NP-complete problem

with the DNA molecule manipulation. Various problems

possibly can be solved with the proficient design of the

algorithm taking in concern to the high cost of resolution and

time/space complexity. Hence, it is necessary to bring out new

model capable of the reduction in both the above parameters.

Natural computing tries to follow the acts and the operations,

simulation defined for nature- inspired computing haves

unique interpretations when describing the emerged models.

In the year of 1943, McCulloch and Pitts [30] presented an

initial model artificial neural networks, motivated by the

neural connection of the brain, also J. Holland proposed

genetic algorithm inspired by the evolution of a living

organisms from ages. Nature has

given inspiration for DNA computation, Ant-Colony

Optimization, Termite nest, etc.

B. Membrane Computing

In late 90’s George Paun [38] brought into insight a new

computational approach from nature named as Membrane

Computing. It unfolded the concept of parallelism and

non-deterministic approach from a living cell; cell is

organized and well-disciplined basic unit of a living

organism. The highlighted feature of internal cell structure is

that the Bio-system has several types of membrane. The outer

membrane is separated from inner child membrane regardless

of the functioning of the membrane in nature as in Fig. 1.1

these are divided into the compartments that do not restrict the

communication among the membranes. The processes

occurring within the cell are complex, and it is impossible to

implement as a whole.

Fig.1.1 Membrane Structure and Hierarchy

The target is to simulate the task performed by the entity of

living organism like replicating, energy production,

metabolism and syntheses of the proteins. Computational

device for membrane computing is defined as P system on the

name of founder George Paun. There are several types of P

system like Cell like P system, Tissue-like P System,

Recognizer P System, P System with Active Membrane. In

cell like P system membranes have structure inspired from the

cell using graphical node structure. As shown in Fig. 1.2,

membrane structure consists of membranes that arrange

themselves in the hierarchical structure within the parent

membrane. Each membrane has environmental region inside

the membrane. The membrane that does not consist of inner

membrane is called as an elementary membrane. A membrane

structure is as that of the rooted tree. Membrane consists

chemical substance within the compartment that corresponds

15

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)
 Vol. 2, Issue 9, September 2016

Amutha A L et al © IJARBEST PUBLICATIONS

to them object of the membrane which can by represented as

the set or the string of the objects termed as a multiset. Objects

can evolve based on the reaction taking place. These reactions

are abstracted as the rules. The aim behind the natural

computing is to point the computationally hard problems to

solve them in specific time. The rules for the reaction of the

chemicals within the membranes are defined. Rules that are

appropriate are applied non-deterministically and with

maximum parallelization. Objects are evolved along with the

steps of rules. Here every region or the compartment rules are

applied at a time bringing up the maximal parallelization. The

rules are applied until there is no object left for the match for

the rule. This brings the terminating stage. The rule can be

applied many times in the same step as we want with the

presence of the number of copies. All computations start from

an initial configuration i.e. the skin membrane and proceed as

stated above only halting computations give a result, which is

capsuled by the objects present in the output region in the

halting

Fig. 1.2 Structure of membrane

Configuration based on the condition. Mitosis is a process of

cell division which produces two daughter cells from a single

parent cell. Daughter cells are twins to one another and

identical to the original parent cell.

C. Applications of P System

Although the Membrane Computing is a biological

inspiration, it contains a good theoretical model for

distributed computing, where different calculations are

operated in a hierarchical structure. For example, the

hierarchy utilized to establish in networking connection, such

as the Internet can be represented as that of membrane

structure. Membrane Computing, according to the true

motivation, were not intend to provide a comprehensive and

perfect accurate model of the living cell without aiming to

faithfully model biological facts in such a way to provide a

modeling framework for the use of biologists, insteadto

explore the computational nature with various quality of

biological membranes. Indeed, most variants of membrane

systems have been proved to be computationally complete,

that is equivalent in power to Turing machines, and

computationally efficient, such that it has the ability to solve

computationally hard problems in polynomial time by

managing time with space. After the firm development of

theoretical model, this domain had been started to develop

practically with the application on the framework of Biology

system and Population Dynamics. A standard procedure

followed here is the following: a) Construction of Membrane

Computing model for a given

phenomenon/process/population/system, b) Developing

software application for simulation of the model, and c) then

test are carried out to experimentally validate and test the

model by using experimental data. Once the model is

considered as validated, further process can be carried out

virtually regarding the data models. Membrane systems have

been recently used to model biological phenomena with

computational systems biology framework representing the

models of signal transduction [35], oscillatory systems [19],

metapopulations [37], quorum sensing [39], metabolic

systems [27, 12, 97], gene regulation control [40] and real

ecosystems [10, 9, 15]. It is observed that the macroscopic,

deterministic and unbroken continues approach followed by

ordinary diff erential equations (ODEs) is questioned in

cellular systems with a low number of standalone and

heterogeneous structure Membrane Computing is a multiset

processing unit using rewriting similar rules – is a

complementary technique to systems for diff erential

equations. Along with applications in biology, Membrane

Computing was also considered helpful in other areas, such as

computer graphics (models based on compartmentalized

Lindenmayer systems proved to be more powerful and

efficient instead of those using classic L-systems),

cryptography, modeling in a unique uniform way parallel

architecture, in linguistics, economics, etc.

This paper is organized as follows: Chapter 2 deals with the

historical account of membrane computing, Chapter 3

explains about GPU and HPC, Chapter 4 explains parallel P

system simulation with active membrane, Chapter 5 gives the

result and analysis and finally we gave conclusion in Chapter

6.

II. A HISTORICAL ACCOUNT OF MEMBRANE COMPUTING

A. Overview

The use of P system provides three important quantities for

scientific use as Educational purpose, to assist the design

related to P system models and serving as more elaborates

software tool. To simulate P system one shall have the model

to be use a structure of the membrane and initial multiset and

set of rules. Simulation core must implement the algorithm

that is aimed to obtain one or more computations of the

defined p system. It is important to design simulator with

better efficiency. Simulation core shall be done step by step

following the computing defined by the P systems, after that it

is necessary to extract relevant information on the simulated

computation and print it as an output.

B. Related Simulators

A review of the simulators developed in the first ten years of

Membrane Computing is described in [16]. The change of

those simulators is an expression of the evolution of the

research itself. In this sense, it is usually to speak about two

generations of simulators according to its finality. It is worth

to mention that both generations overlap on time. One of the

first simulators is Romero-Campero’s simulator, which

implements the multi-compartmental Gillespie algorithm [33]

in SciLab and C. This simulator has been successfully used in

addressing several real-world problems as the simulation of a

signaling pathway associated with the Epidermal Growth

Factor [34]; simulation of FAS-induced apoptosis [13];

modeling gene expression control [40]; or the first

16

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)
 Vol. 2, Issue 9, September 2016

Amutha A L et al © IJARBEST PUBLICATIONS

computational model of Quorum Sensing [39, 44] in Vibrio

Fischeri. Other relevant simulators in the second generation

are: Cyto-Sim [42], a software that can simulate micro and

macroscopic biological processes using arbitrary kinetic laws;

Meta P-lab [11], a virtual laboratory which aims at assisting

modelers both to understand the internal mechanisms of

biological systems and to forecast, in silico, their response to

external stimuli, environmental condition alterations or

structural changes; and Infobiotics Workbench [7], an

integrated software suite incorporating model specification,

simulation, parameter optimization and model checking for

Systems and Synthetic Biology.

C. PLingua Simulator

To simulate the feature of P system and their model’s a

simulator has developed named as PLingua. Here some

matching libraries are used for parsing the input format. It is

user-friendly and user need not to learn input format each time

the uses different simulator The P-Lingua project also

provides free software tools under GNU GPL license [1] for

compilation, simulation and debug tasks. These tools has

integration with Java library called as pLinguaCorer that will

parse and handle P-Lingua input files and check possible

programming errors in regarding Syntactic as well as

Semantic. P-Lingua file can be export to another format in to

gain the interoperability of the file with various software

environments. Fig. 2.1 illustrates this approach to define the

simulator input by using the P-Lingua framework. Such inputs

are free of programming errors since the parser inside

pLinguaCore has already checked them. As mentioned above,

the pLinguaCore library includes several built-in simulators

for the supported models. The current version of pLinguaCore

is 3.0 and can download from the P-Lingua website [5]. Each

version of PLingua and pLinguaCore adds new supported

models and implements new simulation algorithms, the syntax

definition of the language and more details is specified on the

related papers and the website.

Fig. 2.1 PLingua simulator approach

There are the various versions of Plingua and its

pLinguaCorelibrary for the models of the P-System. The

versions description is as follows:

1. P-Lingua 1.0 [17, 8]: this is initial software and is able to

define as well as simulate tractable instances of P-systems

with active membranes. The simulator only procreate one

possible computation and hence the simulated P system must

be flowing together to obtain a useful answer.

2. P-Lingua 2.0 [21, 20, 5]: several cell-like P system models

are incorporated, together with one or more built-in

simulators for each: • Transition P systems. •Symport/antiport

P systems. • Active membranes. • Active membranes with

creation rules. • Stochastic P systems. • Probabilistic P

systems.

3. P-Lingua 2.1 [29, 5]: tissue-like P systems with division

rules are also supported, including its built-in simulator and

some fixed bugs.

4. P-Lingua 3.0 [28, 5]: Population Dynamics P systems

(PDP Systems) are also supported, and several built-in

simulators for this model are added. It includes sequential

implementations of the simulation algorithms presented in

this thesis (DNDP and DCBA). Furthermore, some general

bugs are fixed and the support of stochastic P systems is

discontinued, encouraging the use of Infobiotics Workbench

[7] in this respect. The PLingua is standard format to define P

system to remove the error syntactically as the parser check in

pLinguaCore. PLingua is an inspiration for the simulator to be

built for the membrane computing. This simulator has

implemented the sequential versions, using the functionality

within the PLinguaCore software library. To evaluate

parallelism in true sense same Simulators can be implemented

via GPU with comparison of small occurrence of P system.

D. P System Representation

In [24], it is said that: “the next generation of simulators may

be oriented to solve (at least partially) the problems of storage

of information and massive parallelism by using parallel

language programming or by using multiprocessor

computers”. There were some simulators developed but most

of them was based and designed for sequential approach and

sequential simulators have less performance efficiency. As

the double parallelism gets serialized. Hence sequential

simulation time increases because of the implementation of

parallelism. Ecosystem model of P system needs high

throughput simulation tool. Massively parallel nature of

computation point out parallel technology where simulations

can be made faster.

Formally,a transition Psystem (ofdegreem) is aconstruct of

thefo O, C, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm,io),

whe (finite and non-empty) alphabet of objects,

1. C ⊂O is the set of catalysts,

2. μ is a membrane structure, consisting of m

membranes, labelled with 1, 2,...,m; one says that the

membrane structure, and hence the system, is of

degree m,

3. w1,w2,...,wm are strings over O representing the

multi-sets of objects present in the regions 1,2, . . . ,

m of the membrane structure,

4. R1,R2, . . . , Rmare finite sets of evolution rules

associated with the regions 1,2, . . . , m of the

membrane structure,

5. Io is either one of the labels1,2,...,m, and then the

respective region is the output region of the system,

oritis0, and then the result of a computation is

collected in the environment of the system.

R is a finite set of developmental rules, of the following

forms:

[h a → v] e , forh ∈H,e ∈{+,−, 0}, a ∈O, v∈O∗

(Object evolution rules, associated with membranes and

depending on the label and the charge of the membranes, but

17

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)
 Vol. 2, Issue 9, September 2016

Amutha A L et al © IJARBEST PUBLICATIONS

not directly involving the membranes, in the sense that the

membranes are neither taking part in the application of these

rules nor are they modified by them);

a[h]e1 → [h b] e2 , for h ∈H, e1 , e2∈{+, −, 0}, a, b ∈O

(In communication rules; an object is introduced in the

membrane, possibly modified during this process; also the

polarization of the membrane can be modified, but not its

label);

1. [h a] e1 → [h] e2 b, for h ∈H, e1 ,e2 ∈{+,−,0}, a, b

∈O

(Out communication rules; an object is sent out of the

membrane, possibly modified during this process; also the

polarization of the membrane can be modified, but not its

label);

2. [h a] e → b, forh ∈H,e ∈{+,−, 0}, a, b ∈O

(Dissolving rules; in reaction with an object, a membrane can

be dissolved, while the object specified in the rule can be

modified);

3. [h a] e1 → [h b] e2 [hc]e3 , for h ∈H,e1 , e2, e3 ∈{+,−, 0},

a, b, c∈O(Division rules for elementary membranes; in

reaction with an object, the membrane is divided into two

membranes with the same label, possibly of different

polarizations ;the object specified in the rule is replaced

in the two new membranes by possibly new objects; there

main objects are duplicated and may evolve in the same

step)

E. Parallel P System Simulation

High Performance Computing can be one of the solutions for

the Membrane Computing Parallel simulation. There are

many approach followed for HPC simulation techniques.

Some of them are as below:

Simulator Based on Cluster

Clusters are inter-connected computers through a local

network. They work in coordination to execute parallel

programs. As connection increases system bus acts as

bottleneck. Several experiments are made to work on such

platform. Also cluster had been first platform to implement

parallelism for simulator. Ciobanu and Guo [14] simulate a

restricted set of transition P systems using a Linux based

cluster, using C++ and MPI library. Here each membrane is

assigned to the each system, while each of them executes

sequential code. Another approach was introduced by

Syropoulos et al. [46]. This simulator works under Java, and

makes use of RMI (Remote Method Invocation) to distribute

the workload. Finally, a novel alternative has been initiated by

DiezDolinski et al. [18]. They provide a highly scalable

solution to the natural exponential growth of space made by P

systems. For this purpose they use MapReduce algorithms

over distributed environments. It has been categorized here as

for clusters, but it has been conceived to work over grids and

Internet. Moreover, a new branch of P-Lingua, called

Distributed P-Lingua, was developed. Finally, the simulator is

implemented in Java, using the freely Hadoop library.

Although no performance analysis was provided, the first

results suggest a promising research line.

Simulator Based on Microcontroller

A microcontroller is an integrated circuit containing a

processor, memory and input/output units. Although they are

limited by their set of instructions and number precision, they

are very chip technology that can also be interconnected.

Guti´errez et al. [23, 22] utilize this technology to provide an

alternative platform. Their aim is to better balance flexibility

and performance at a low cost. The work is based on one of

the most used microcontrollers, that is, the PIC (Peripheral

Interface Controller). The implementation is based on the

previously proposed algorithms/architectures for improving

the communication among units dealing with membranes [43,

8]. They categorize their solution as a “partially parallel

evolution with partially parallel communication” [22].

Although no performance analysis is provided, their design

will be useful for future work.

Cloud Based Simulation

Cloud computing [45] provides a service where performing

calculus in virtual network. They implements a system similar

to a cluster, but for a cheap rental price. In this regard, another

novel approach to provide a high number of resources for

simulating P systems creating exponential workspace, was

initiated by Nabil et al. [31]. Authors use the SAT problem as

a case study, and run an instance with 11 variables (requiring

211 membranes). Although no performance analysis is

provided, the design serves as the base for future work.

Simulator based on GPU Computing

The GPU based simulation use the graphics card for

processing. Accelerating GPU code for HPC and it is cheap

compared to relative technologies. Not all the programs need

to be accelerated by GPU. There is flexibility for the

performance based on the CPU and GPU computation, One of

the major support for such computation is NVIDIA CUDA

with NVIDIA’s GPU[26, 5] and OpenCL supported by AMD.

Present simulation of the project is subjected to the GPU

computing.

PMCGPU

This consist of several simulators that have been abstracted as

project work for p system models.

1. PCUDA- First simulation of P system with CUDA having

sequential and parallel version supporting P system with

active membrane.

2. PCUDASAT- It is a part of PCUDA for Solving the SAT

problem via P system.

3. TSPCUDASAT- it is a branch of the above PCUDASAT

that deals with tissue P system with division rule solving

SAT.

4. ABCD-GPU- It is research project to Population Dynamics

P system. It is based on CUDA and OpenMP.

Simulation of Spiking Neural P Syatems

Here algorithm is applied using matrix representation of the

model. Each computation is manipulated by multiprocessor of

GPU.

Simulation of evolution-communication P systems with

energy and without antiport rules.

Simulation is performed with linear algebra operation and

execution performed on GPU.

Simulation of enzymatic numerical P systems

18

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)
 Vol. 2, Issue 9, September 2016

Amutha A L et al © IJARBEST PUBLICATIONS

This Simulation is designed for robot controller and results

were significant for the artificial intelligence.

III. PARALLEL P SYSTEM SIMULATION WITH ACTIVE

MEMBRANES

For the validation of P system it is mandatory for the

extraction of the data via simulation on the electronic devices.

This will add benefit for researchers to compute and analyze

as well as extract result from the model. Membrane

computing until now have ben simulated sequentially with

CPU but to utilize the maximum parallelism GPU can be

utilized to fulfill the definition of parallelism by P system.

Hence requirement of highly parallel computation technology

is needed to accomplish the P system formal definition. New

era of GPU generation is meant for heterogeneous parallelism

with several threads in execution at a time.

Fig. 3.1 Parallel simulation process work flow

Fig. 3.1 shows two stage of processing and work flow of the

algorithm. It has two stages as: Selection and Execution. The

selection stage consists in the search for rules to be executed

in each membrane of a given configuration. The selected rules

are executed at the execution stage, what finalizes the

simulation of a computation step.

A. Algorithm for the Simulation

As the simulation is to be done in two parts, CPU and GPU

memory shall be mapped accordingly and execution should

be done. Fig. 4.2 shows the basic algorithm behind the work

flow of the simulator. 1) Initialization is done with the

definition of environment in the terms Lingua parser with the

formal definition of P system. 2) That file is read and

matching rules are found from the define rule set. These rules

are stored as a list in applicable rule set. After the selection of

rules to be executed are sorted in maximum parallel rule set.

3) All relevant data is to be copied from CPU to GPU using

CUDA API library function. 5) Kernels are executed. 6)

Dynamic parallelism is implied. 7) Resultant data is copied on

GPU.

In order to avoid non-determinism somehow, the simulator

assumes only confluent P systems. Thus, instead of working

with the entire tree of possible computations,

Fig. 3.2 Algorithm for the simulation of membrane computing

the simulator selects and simulates only one computation

path, since all paths are guaranteed to give the same answer.

Priorities among rules in the selection stage are:

1. Dissolution rules: they decrease the number of

membranes (highest priority);

2. Evolution rules: they do not need any communication

among membranes (avoids synchronization);

3. Send-out rules: they do need communication between the

given membrane and its parent (adding one object to its

parent);

4. Send-in rules: they do need communication between the

given membrane and its parent (reserving one object

from its parent and adding the object to itself);

5. Division rules: they increase the number of membranes

(lowest priority).

Fig. 3.3 Diagrammatic Representation of rules

Fig. 3.3 shows the diagrammatic representation of rules.

Finally, note that this two-staged algorithm allows keeping

coherence in the simulation. If we perform selection and

execution of rules, one by one, it would be difficult to ensure

the semantic constraints of the system. Moreover, the selected

and executed rules in a step of the simulator may not

correspond to the rules applied in a computing step of the

theoretical model. An alternative solution might be to take

two copies of the configuration, one to be updated with the

right-hand sides of the rules, and another to select rules

(subtracting the left-hand side of rules). As this involves a

bigger use of memory, our simulator uses the two stages, and a

temporary data structure to store information about the

selection of rules.

B. PLingua Input File

The input of the simulator (the P system with active

membranes to simulate) is given by a binary file. It is a file

whose information is encoded in Bytes and bits (not

understandable by humans like plain text), which is suitable

for compressing data. This binary file contains all the

information of the P system (alphabet, labels,

Fig. 3.4 PLingua input for simulator

rules, etc.) which is the input of our simulator. The format is

depicted in Section C. pLinguaCore 2.0 [21] is able to

19

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)
 Vol. 2, Issue 9, September 2016

Amutha A L et al © IJARBEST PUBLICATIONS

translate a P system written in P-Lingua language into a

binary file. We therefore use a pipeline of applications to

simulate P systems, as shown in Fig. 3.4. First, we define our P

system into P-Lingua. PLinguaCore translate it to a binary

file, which is used as the input of the simulator. The output is a

plain text generated with a format similar to the provided in

pLinguaCore.

Some sample of PLingua input file is shown in Fig. 3.5 and

3.6:

Fig. 3.5 Sample 1 for PLingua file

Fig. 3.6 Sample 2 for PLingua file

C. Binary Format for Input

Fig. 3.7 shows binary format of the input file for our

simulator. It specifies the number of bytes used for each

required element, and comments with explanations are given

by ’#’. Note that it is thought for compressing the information

of the P system. The format is structured in 3 main parts: 1) A

header storing general information about the file (version,

etc.). 2) The P system general information: alphabet,

membrane structure(plus initial charges)and initial multisets.

3) The rules of the P system.

Fig. 3.7 Binary format for input file

D. Simulation on CUDA

In the CUDA programming model, our main effort is dividing

the required work into processing pieces, which have to be

processed by TB thread blocks of T threads each. Using a

thread block size of T=256, it is empirically determined to

obtain the overall best performance on the Tesla C1060 [41].

each thread block can be considered independent to the other,

and it is at this level at which internal communication (among

threads) is cheap using explicit barriers to synchronize, and

external communication (among blocks) becomes expensive,

since global synchronization can only be achieved by the

barrier implicit between successive kernel calls. The need of

global synchronization in our designs requires successive

kernel calls even to the same kernel. Fig. 3.8 shows the overall

design of the simulator that we have implemented on the

GPU. We distribute the thread blocks and threads as follows.

Each membrane of the simulated P system is attributed to each

thread block. In this way, we identify the parallelism between

membranes by

Fig. 3.8 Design of Simulator

using the parallelism between thread blocks. Precautions must

be taken with this design decision. Membranes can

communicate accordingly to the hierarchical tree structure,

while thread blocks are all independent. Communication

through send-out and dissolution rules (down-up direction) is

controlled by globally synchronizing the selection and

execution stages. This is implemented by using different

kernels. However, send-in rules (up-down direction in the

tree) are more complicated to control. In this case, different

membranes can compete for single objects. The sequential

simulator controls this issue by looping the tree from the top

to the bottom. However, the parallel simulator has to run all

the membranes in parallel. Therefore, for the sake of

simplicity, the parallel simulator can handle only two levels of

membrane hierarchy: the skin (controlled by the host) and the

rest of elementary membranes (controlled by the thread

blocks in device). This is the tree structure we can find in the

literature for the majority of solutions based on P systems with

active membranes (note that division rules enlarge the tree

widthwise) [36]. Furthermore, each individual thread is

assigned to each object within a membrane (corresponding to

its thread block). It is responsible for identifying the rules that

can be executed using the corresponding object. That is, rules

that have that object in their left-hand sides. Since all blocks

must have the same number of threads, and each membrane

can contain a different multiset of objects in every time step,

we identify as common for all membranes the whole alphabet.

Note that threads can work with many objects that do not

really exist in the membrane, as all the alphabet of objects is

usually not present within a membrane at a given instant. In

fact, the simulator assigns multiple objects to the same thread

for not restricting the number of objects in the alphabet.

However, the number of objects in the alphabet must be

divisible by a number smaller than 512 (the maximum number

of threads per thread block), in order to equally distribute the

objects among the threads. The simulator contains five

kernels to implement the selection and execution stages. The

first kernel implements the selection stage and also the

execution stage for evolution rules. The other four kernels

implement the other execution rules (dissolution, division,

send-out and send-in rules). All the kernels follow this basic

design. The selection kernel starts with the selection stage.

After the selection stage, we also execute in this kernel the

evolution rules. These rules are executed inside this kernel for

three main reasons: the evolution rules do not imply

communication (and therefore, synchronization) among

membranes; they are executed in a maximal way, and this

20

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)
 Vol. 2, Issue 9, September 2016

Amutha A L et al © IJARBEST PUBLICATIONS

decision allows us to use less global memory because it is not

necessary to store the selected evolution rules for the

execution stage. The rest of the rules to be applied are

executed in four different kernels, one kernel per each kind of

rule (dissolution, division, send-out, send-in)

E. Dynamic Parallelism

Dynamic parallelism is nested parallelism executed by

CUDA. Parent kernel will be fired from the CPU or the host

that will launch child kernel via parent kernel on GPU/device

itself. Thus the depth is travelled by GPU kernel itself. This

quality of CUDA programming eliminates the recursion and

irregular structure of the loop. This feature provides solution

to the hierarchical algorithms where data partitions will be

decided by the main kernel launched on GPU via CPU. Hence

the problem structure with higher complexity can be solved

with less effort. Fig. 3.5 shows the nested structure of the

parent and child kernel. All the child kernels will follow

parallelism and will run at a time.

Fig. 3.9 Nested parallelism of Dynamic parallelism

Child Grid will be inherited from the parent Grid and shared

memory will be configured. Two synchronizations will be

followed: Implicit –after the parent grid’s execution. And

second is Explicit – for all the stream data i.e. for all threads.

CUDA 5.0+ will support for the compilation of such

hierarchical parallelism.

IV. RESULTS AND ANALYSIS

PLingua file to binary file conversion is as follows via

PLinguaCore.

Fig. 4.1 Binary input files 1

As shown in Fig. 4.1, basically text file with .pli extension is

converted to the binary file via pparser.

Fig. 4.2 Make executable file

After the .bin file is generated, make shall be executed for the

generation of executable file to develop and run the simulator.

Commands shall be as shown in the Fig. 4.2. Fig. 4.3 shows

the help commands.

Fig. 4.3 shows the help commands.

Fig. 4.4 Running Sequentially:

Command for Fig. 4.4 is as follows:

trainee@trainee:~/NVIDIA_GPU_Computing_SDK/C/bin/li

nux/release$./pcuda-i/home/trainee/NVIDIA_GPU_Computi

ng_SDK/C/src/pcuda/plingua/sat_5_qu een_v2.bin -s -l 0

Fig. 4.5 sample output 1

Fig. 4.5.1 Sample output 1 continuation.

Above Fig. 4.3 and Fig. 4.4 shows the help and supported

commands to run the .bin file and extract the data. Command

are as follows:

trainee@trainee:~/NVIDIA_GPU_Computing_SDK/C/src/b

in/linux/release$./algo_pcuda–i/home/trainee/NVIDIA_GP

U_Computing_SDK/C/src/algo_pcuda/plingua/bin\

files/a4.bin it 2 –v3 –o obj –b fac –m memb – f –p3

Fig. 4.6 sample output 2

Fig. 4.6.1 sample output 2 continue

Fig. 4.5 and Fig 4.5.1 shows sample output along with the

rules as the extraction. Fig. 4.6 and Fig. 4.6.1 shows sample

output along with the rules as the extraction Command

followed here is as follows:

trainee@trainee:~/NVIDIA_GPU_Computing_SDK/C/src/b

in/linux/release$./algo_pcuda–i

/home/trainee/NVIDIA_GPU_Computing_SDK/C/src/algo_

pcuda/plingua/bin\ files/a3.bin it 2 –v3 –o obj –b fac –m

memb–f –p3

21

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)
 Vol. 2, Issue 9, September 2016

Amutha A L et al © IJARBEST PUBLICATIONS

Fig. 4.7 Membrane generation analysis

Above Fig. 4.7 shows the membrane generation comparison via

sequential code and parallel code using CUDA

V. CONCLUSION

This simulator is primary version extension to PCUDA

simulator with additional feature of dynamic parallelism.

Dynamic parallelism is added to implement the hierarchy of

the membrane structure, so that two level hierarchies can be

extended. This was an experimental approach to overcome

the instability of PLingua simulator in terms of parallelism

and membrane level hierarchy of PCUDA with the dynamic

parallelism.

For the future work, simulation of 3 level hierarchies can be

done. Also reduction in the time and space complexity by

assigning the objects to the threads, specific model can be

implemented based on the requirements. Multiplicity can be

increased with the double configuration on the multiset.

PParser can be modeled such a way to accept the multiplicity.

REFERENCES

[1] GNU GPL license. http://www.gnu.org/licenses/gpl. html.

[2] NVIDIA CUDA C Programming Guide 4.2.

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/

CUDA_C_Programming_Guide.pdf.

[3] P-Lingua release 1.0 website. http://www. gcn.us.es /plingua.

[4] The GPGPU organization. http://www.gpgpu.org.

[5] The P-Lingua web page. http://www.p-lingua.org

[6] L. M. Adleman. Molecular computation of solutions to combinatorial

problems. Science, 266(11):1021–1024, 1994

[7] J. Blakes, J. Twycross, F. J. Romero-Campero, and N. Krasnogor. The

infobiotics workbench: an integrated in silicomodelling platform for systems

and synthetic biology. Bioinformatics, 27(23):3323–3324, 2011.

[8] G. Bravo, L. Fern´andez, F. Arroyo, and M. A. Pen˜a. Hierarchical

masterslave architecture for membrane systems implementation. In

Thirteenth International Symposium on Artificial Life and Robotics 2008,

AROB 13th, 2008.

[9] M. Cardona, M. A. Colomer, A. Margalida, I. P´erez-Hurtado, M. J.

P´erez-Jim´enez, and D. Sanuy. A P system based model of an ecosystem of

some scavenger birds. In G. Pa˘un, M. P´erez-Jim´enez, A. Riscos-Nu´n˜ez,

G. Rozenberg, and A. Salomaa, editors, Membrane Computing, volume

5957 of Lecture Notes in Computer Science, pages 182–195. Springer Berlin

Heidelberg, 2010

[10] M. Cardona, M. A. Colomer, M. J. P´erez-Jim´enez, D. Sanuy, and A.

Margalida. Modeling ecosystems using P systems: the bearded vulture, a

case study. In D. Corne, P. Frisco, G. Pa˘un, G. Rozenberg, and A. Salomaa,

editors, Membrane Computing, volume 5391 of Lecture Notes in Computer

Science, pages 137–156. Springer Berlin Heidelberg, 2009.

[11] A. Castellini and V. Manca. Metaplab: A computational framework for

metabolic p systems. In Membrane Computing, volume 5391 of Lecture

Notes in Computer Science, pages 157–168. Springer Berlin Heidelberg,

2009.

[12] A. Castellini, V. Manca, and Y. Suzuki. Metabolic P system flux

regulation by artificial neural networks. In G. Pa˘un, M. P´erez-Jim´enez, A.

Riscos-Nu´n˜ez, G. Rozenberg, and A. Salomaa, editors, Membrane

Computing, volume 5957 of Lecture Notes in Computer Science, pages

196–209. Springer Berlin Heidelberg, 2010.

[13] S. Cheruku, A. Pa˘un, F. J. Romero-Campero, M. J. P´erez-Jim´enez,

and O. H. Ibarra. Simulating FAS-induced apoptosis by using P systems.

Progress in Natural Science, 17:424–431, 2007.

[14] G. Ciobanu and G. Wenyuan. A P system running on a cluster of

computers. In Lecture Notes in Computer Science, WMC 2003, pages

123–150. Springer-Verlag, 2004.

[15] M. Colomer, A. Margalida, D. Sanuy, and M. J. P´erez-Jim´enez. A

bioinspired computing model as a new tool for modeling ecosystems: The

avian scavengers as a case study. Ecological Modelling, 222(1):33–47,

2011.

[16] D. D´ıaz-Pernil, C. Graciani-D´ıaz, M. A. Guti´errez-Naranjo, I.

P´erezHurtado, and M. J. P´erez-Jim´enez. Software for P systems, chapter

17, pages 437–454. Oxford University Press, Oxford (U.K.), 2010.

[17] D. D´ıaz-Pernil, I. P´erez-Hurtado, M. J. P´erez-Jim´enez, and A.

RiscosNu´n˜ez. A P-Lingua programming environment for Membrane

Computing. In D. Corne, P. Frisco, G. Pa˘un, G. Rozenberg, and A. Salomaa,

editors, Membrane Computing, volume 5391 of Lecture Notes in Computer

Science, pages 187–203. Springer Berlin Heidelberg, 2009.

[18] L. DiezDolinski, R. Nu´n˜ezHerva´s, M. Cruz Echeand´ıa, and A.

Ortega. Distributed simulation of P systems by means of Map-Reduce: first

steps with Hadoop and P-Lingua. In J. Cabestany, I. Rojas, and G. Joya,

editors, Advances in Computational Intelligence, volume 6691 of Lecture

Notes in Computer Science, pages 457–464. Springer Berlin Heidelberg,

2011.

[19] F. Fontana, L. Bianco, and V. Manca. P systems and the modeling of

biochemical oscillations. In R. Freund, G. Pa˘un, G. Rozenberg, and A.

Salomaa, editors, Membrane Computing, volume 3850 of Lecture Notes in

Computer Science, pages 199–208. Springer Berlin Heidelberg, 2006

[20] M. Garc´ıa-Quismondo, R. Guti´errez-Escudero, M. A.

Mart´ınez-delAmor, E. Orejuela-Pinedo, and I. P´erez-Hurtado. P-Lingua

2.0: a software framework for cell-like P systems. International Journal of

Computers, Communications and Control, 4(3):234–243, 2009.

[21] M. Garc´ıa-Quismondo, R. Guti´errez-Escudero, I. P´erez-Hurtado, M.

J. P´erez-Jim´enez, and A. Riscos-Nu´n˜ez. An overview of P-Lingua 2.0. In

G. Pa˘un, M. J. P´erez-Jim´enez, A. Riscos-Nu´n˜ez, G. Rozenberg, and A.

Salomaa, editors, Membrane Computing, volume 5957 of Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2010.

[22] A. Guti´errez and S. Alonso. P systems: from theory to implementation,

chapter 17, pages 205–226. Concept Press Ltd, Hong Kong, 2010.

[23] A. Guti´errez, L. Fern´andez, F. Arroyo, and S. Alonso. Hardware and

software architecture for implementing membrane systems: A case of study

to transition P systems. In M. Garzon and H. Yan, editors, DNA Computing,

22

http://www.gnu.org/licenses/gpl.%20html
http://www.gpgpu.org/
http://www.p-lingua.org/

 ISSN (ONLINE): 2395-695X
ISSN (PRINT): 2395-695X

 International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)
 Vol. 2, Issue 9, September 2016

Amutha A L et al © IJARBEST PUBLICATIONS

volume 4848 of Lecture Notes in Computer Science, pages 211–220.

Springer Berlin Heidelberg, 2008

[24] M. A. Guti´errez-Naranjo, M. J. P´erez-Jim´enez, and A.

Riscos-Nu´n˜ez. Available membrane computing software. In G. Ciobanu,

G. Pa˘un, and M. J. P´erez-Jim´enez, editors, Applications of Membrane

Computing, Natural Computing Series, pages 411–436. Springer Berlin

Heidelberg, 2006.

[25] B. W. Kernighan and D. Ritchie. The C programming language.

Prentice Hall, 2nd edition, 1988.

[26] D. B. Kirk and W. W. Hwu. Programming massively parallel

processors: a hands-on approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1st edition, 2010.

[27] V. Manca. Fundamentals of Metabolic P Systems, chapter 19, pages

475–498. Oxford University Press, Oxford (U.K.), 2010.

[28] M. Mart´ınez-del-Amor, I. P´erez-Hurtado, M. Garc´ıa-Quismondo,

L.F. Mac´ıas-Ramos, L. Valencia-Cabrera, ´A. Romero-Jim´enez, C.

GracianiD´ıaz, A. Riscos-Nu´n˜ez, M.A. Colomer, and M.J.

P´erez-Jim´enez. DCBA: Simulating population dynamics P systems with

proportional object distribution. In Proceedings of the 13th International

Conference on Membrane Computing (CMC13), pages 291–310, Budapest,

Hungary, August 2012.

[29] M. A. Mart´ınez-del-Amor, I. P´erez-Hurtado, M. J. P´erez-Jim´enez,

and A. Riscos-Nu´n˜ez. A p-lingua based simulator for tissue p systems. The

Journal of Logic and Algebraic Programming, 79(6):374–382, 2010.

[30] M. Minsky and S. Papert. Perceptions. MIT Press, 1970.

[31] E. Nabil, H. Hameed, and A. Badr. A cloud based P systems algorithm.

International Journal of Computer Applications, 54(13):26–31, 2012.

[32] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.

Phillips. GPU Computing. Proceedings of the IEEE, 96(5):879–899, 2008.

[33] G. P˘aun and F. J. Romero-Campero. Membrane Computing as a

modeling framework. Cellular systems case studies. In M. Bernardo, P.

Degano, and G. Zavattaro, editors, Formal Methods for Computational

Systems Biology, volume 5016 of Lecture Notes in Computer Science, pages

168– 214. Springer Berlin Heidelberg, 2008.

[34] M. P´erez-Jim´enez and F. Romero-Campero. A study of the robustness

of the EGFR signalling cascade using continuous membrane systems. In

Membrane Computing, volume 3561 of Lecture Notes in Computer Science,

pages 268–278. Springer Berlin Heidelberg, 2005.

[35] M. P´erez-Jim´enez and F. Romero-Campero. P systems, a new

computational modelling tool for systems biology. In C. Priami and G.

Plotkin, editors, Transactions on Computational Systems Biology VI,

volume 4220 of Lecture Notes in Computer Science, pages 176–197.

Springer Berlin Heidelberg, 2006.

[36] M. J. P´erez-Jim´enez, ´A. Romero-Jim´enez, and F. Sancho-Caparrini.

Complexity classes in models of cellular computing with membranes.

Natural Computing, 2(3):265–285, 2003.

[37] D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical

probabilistic p systems. International Journal of Foundations of Computer

Science, 17(1):183–204, 2006.

[38] G. Pa˘un. Computing with membranes. Journal of Computer and

System Sciences, 61:108–143; Turku Center for CS–TUCS Report No 208

(1998), 2000.

[39] F. J. Romero-Campero and M. J. P´erez-Jim´enez. A model of the

quorum sensing system in vibrio fischeri using P systems. Artificial Life,

14(1):95– 109, 2008.

[40] F. J. Romero-Campero and M. J. P´erez-Jim´enez. Modelling gene

expression control using p systems: The lac operon, a case study.

Biosystems, 91(3):438–457, 2008.

[41] N. Satish, M. Harris, and M. Garland. Designing efficient sorting

algorithms for manycore GPUs. In IPDPS ’09: Proceedings of the 2009 IEEE

International Symposium on Parallel & Distributed Processing, pages 1– 10.

IEEE Computer Society, May 2009.

[42] S. Sedwards and T. Mazza. Cyto-sim: a formal language model and

stochastic simulator of membrane-enclosed biochemical processes.

Bioinformatics Applications Note, 23(20):2800–2802, 2007.

 [43] J. A. Tejedor, L. Ferna´ndez, F. Arroyo, and G. Bravo. An architecture

for attacking the communication bottleneck in P systems. Artificial Life and

Robotics, 12(1-2):236–240, 2008.

[44] G. Terrazas, N. Krasnogor, M. Gheorghe, F. Bernardini, S. Diggle, and

M. Ca´mara. An environment aware P system model of quorum sensing. In

S. Cooper, B. Lo¨we, and L. Torenvliet, editors, New Computational

Paradigms, volume 3526 of Lecture Notes in Computer Science, pages

479–485. Springer Berlin Heidelberg, 2005.

[45] W. Voorsluys, J. Broberg, and R. Buyya. Introduction to Cloud

Computing, pages 1–41. Wiley press, 2011.

[46] A. Syropoulos, L. Mamatas, P. C. Allilomes, and

K. T. Sotiriades. A distributed simulation of transition P systems. In

Workshop on Membrane Computing, pages 357–368, 2003.

23

