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Abstract - In this paper, we study the existence of the positive so-

lution of the nonlinear antiperiodic boundary value problem

Dα
0+x(t) = f(t,x(t)),0 < t < 1

x(0) + x(1) = 0,x′(0) + x′(1) = 0

where 1 < α ≤ 2 is a real number and Dα
0+ is the Caputo’s fractional

derivative and f : [0,1]× [0,∞) → [0,∞) is continuous. We study the

conditions for existence of positive solutions by means of fixed point

theorem on cones.

Index Terms:Antiperiodic BVP, Caputo derivative, Cone, Fixed point

theorem, Green’s function, Positive Solution.

I. INTRODUCTION

The Fractional differential equations involves the derivatives of fractional or-
der, which plays a significant role in aerodynamics, physics, chemistry, biosciences,
etc., especially in the fields of engineering and information technology.

Fractional derivative equip with mostly by two operators say Riemann Liouville
and Caputo operators. Meanwhile Caputo operator efficiently involves in solving
both initial value problems as well as boundary value problems.

In [8], the conditions for existence and multiplicity of positive solutions of non-
linear fractional differential equations with the boundary value problem involving
Caputo’s derivative.

Dα
0+x(t) = f(t, x(t)), t ∈ (0, 1)
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x(0) + x′(0) = 0, x(1) + x′(1) = 0

where 1 < α ≤ 2 is a real number and Dα
0+ is the Caputo’s fractional derivative

and f : [0, 1]× [0,+∞) → [0,+∞) is continuous.
Motivated by the above work, it is proposed to investigate the existence of

positive solutions for antiperiodic nonlinear boundary value problem of fractional
order.

Dα
0+x(t) = f(t, x(t)), t ∈ (0, 1)

x(0) + x(1) = 0, x′(0) + x′(1) = 0 (1)

where 1 < α ≤ 2 is a real number and f : [0, 1]× [0,+∞) → [0,+∞) is continuous.
The existence of positive solutions is obtained by means of a fixed point theorem
on cones.

II. PRELIMINARIES

In this section, we give some important definitions, lemmas and some preliminaries
which are used throughout by this paper.
Definition 2.1. The Riemann - Liouville fractional integral of order α can be
written as

Iα0+y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds, t > 0

where α > 0.

Definition 2.2.[7] For a function f(x) given in the interval [0,∞), the expression

Dα
0+f(x) =

1

Γ(n− α)

(

d

dx

)n ∫ x

0

f(t)

(x− t)α−n+1
dt

where n = [α]+1, [α] denotes the integer part of number α, is called the Riemann-
Liouville fractional derivative of order α.

Lemma 2.1.[8] Let α > 0, then the differential equation

Dα
0+x(t) = 0

has solutions x(t) = c0 + c1t+ c2t
2 + ...+ cnt

n−1, ci ∈ R, i = 0, 1, ..., n, n = [α] + 1.

Lemma 2.2.[8] Let α > 0, then

Iα0+D
α
0+u(t) = u(t) + c0 + c1t+ c2t

2 + ...+ cnt
n−1
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for some ci ∈ R, i = 0, 1, ...., n, n = [α] + 1.

Lemma 2.3.[4] Let X be a Banach space, and let P ⊂ X be a cone in X. Assume
Ω1,Ω2 are open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let S : P −→ P be a
completely continuous operator such that, either

(1) ‖Sw‖ ≤ ‖w‖ , w ∈ P ∩ ∂Ω1, ‖Sw‖ ≥ ‖w‖ , w ∈ P ∩ ∂Ω2, or
(2) ‖Sw‖ ≥ ‖w‖ , w ∈ P ∩ ∂Ω1, ‖Sw‖ ≤ ‖w‖ , w ∈ P ∩ ∂Ω2.

Then S has fixed point in P ∩ Ω2|Ω1.

Definition 2.3.[8] A map δ is said to be a nonnegative continuous concave func-
tional on K if δ : K −→ [0,+∞) is continuous and

δ(tx+ (1− t)y) ≥ tδ(x) + (1− t)δ(y)

for all x, y ∈ K and 0 ≤ t ≤ 1. And let

K(δ, a, b) = {u ∈ K|a ≤ δ(u), ‖u‖ ≤ b}

III. MAIN RESULTS

Lemma 3.1. Let w(t) ∈ C[0, 1] be a given function, then the boundary value
problem,

Dα
0+x(t) = f(t, x(t)), 0 < t < 1

x(0) + x(1) = 0, x′(0) + x′(1) = 0 (2)

has a unique solution

x(t) =

∫ 1

0

G(t, s)h(s)ds (3)

where

G(t, s) =











2(t−s)α−1−(1−s)α−1

2Γ(α)
+ (1−s)α−2−2t(1−s)α−2

4Γ(α−1)
, s ≤ t

(1−s)α−2−2t(1−s)α−2

4Γ(α−1)
− (1−s)α−1

2Γ(α)
, t ≤ s

(4)

Here G(t, s) is called the Green’s function of the given boundary value problem.
Proof. Let

Dα
0+x(t) = w(t) (5)

Since

Iα0+D
α
0+x(t) = x(t) + c1 + c2t+ ...

3
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Iα0+x(t) = x(t) + c1 + c2t+ ...

x(t) = Iα0+w(t)− c1 − c2t

From the definition,

Iα0+w(t) =
1

Γ(α)

∫ t

0

(t− s)α−1w(s)ds

x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1w(s)ds− c1 − c2t

for some constants c1, c2 ∈ R. By using the relations Dα
0+I

α
0+x(t) = x(t) and

Iα0+I
β
0+x(t) = Iα+β

0+ , where α, β > 0; x ∈ L(0, 1)[7], we have

x′(t) = D1
0+I

α
0+w(t)− c2

= Iα−1
0+ w(t)− c2

x′(t) =
1

Γ(α− 1)

∫ t

0

(t− s)α−2w(s)ds− c2

As applying the boundary conditions we have,

x(0) = −c1

x′(0) = −c2

x(1) = Iα0+c0 − c1 − c2

x′(1) = Iα−1
0+ c0 − c2

Since,

x(0) + x(1) = 0

−c1 + Iα0+c0 − c1 − c2 = 0

Iα0+c0 − 2c1 = c2 (6)

and also x′(0) + x′(1) = 0

Iα−1
0+ c0 − 2c2 = 0 (7)

substituting (6) in (7) we get,

Iα−1
0+ c0 − 2Iα0+c0 + 4c1 = 0

c1 =
1

4

[

2Iα0+c0 − Iα−1
0+ c0

]

4
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Therefore the unique solution is,

x(t) = Iα0+w(t)−
1

4

[

2Iα0+c0 − Iα−1
0+ c0

]

− t

[

Iα0+c0 − 2

[

1

4

(

2Iα0+c0 − Iα−1
0+ c0

)

]]

=
1

Γ(α)

∫ t

0

(t− s)α−1w(s)ds−
1

2Γ(α)

∫ 1

0

(1− s)α−1w(s)ds

+
1

4Γ(α− 1)

∫ 1

0

(1− s)α−2w(s)ds−
t

2Γ(α− 1)

∫ 1

0

(1− s)α−2w(s)ds

=
1

Γ(α)

∫ t

0

(t− s)α−1w(s)ds−
1

2Γ(α)

∫ t

0

(1− s)α−1w(s)ds

−
1

2Γ(α)

∫ 1

t

(1− s)α−1w(s)ds+
1

4Γ(α− 1)

∫ t

0

(1− s)α−2w(s)ds

+
1

4Γ(α− 1)

∫ 1

t

(1− s)α−2w(s)ds−
t

2Γ(α− 1)

∫ t

0

(1− s)α−2w(s)ds

−
t

2Γ(α− 1)

∫ 1

t

(1− s)α−2w(s)ds

=

∫ t

0

[

2(t− s)α−1 − (1− s)α−1

2Γ(α)
+

(1− s)α−2 − 2t(1− s)α−2

4Γ(α− 1)

]

w(s)ds

+

∫ 1

t

[

(1− s)α−2 − 2t(1− s)α−2

4Γ(α− 1)
−

(1− s)α−1

2Γ(α)

]

w(s)ds

=

∫ 1

0

G(t, s)w(s)ds

which completes the proof.

Lemma 3.2. Let w(t) ∈ C[0, 1] be a given function, then function G(t, s) defined
by (4) has the following properties:

(R1) G(t, s) ∈ C ([0, 1]× [0, 1)) and G(t, s) > 0 for t, s ∈ (0, 1)
(R2) There exists a function χ ∈ C(0, 1) such that

min
1/4≤t≤3/4

G(t, s) ≥ |χ(s)|H(s), s ∈ (0, 1)

max
0≤t≤1

G(t, s) ≤ H(s), (8)

where

H(s) =
(1− s)α−1

2Γ(α)
+

(1− s)α−2

4Γ(α− 1)
, s ∈ [0, 1) (9)

5
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Proof. From G(t, s), it is obvious that G(t, s) ∈ C([0, 1]× [0, 1)) and G(t, s) ≥ 0
for s, t ∈ (0, 1). Next we shall prove (R2). From the definition of G(t, s), we know
that for a given s ∈ (0, 1), G(t, s) is decreasing function with respect to t for t ≤ s,

g1(t, s) =
2(t− s)α−1 − (1− s)α−1

2Γ(α)
+

(1− s)α−2 − 2t(1− s)α−2

4Γ(α− 1)
, s ≤ t

g2(t, s) =
(1− s)α−2 − 2t(1− s)α−2

4Γ(α− 1)
−

(1− s)α−1

2Γ(α)
, t ≤ s

That is, g1(t, s) is a continuous function for 1/4 ≤ t ≤ 3/4, and g2(t, s) is decreasing
with respect to t. Hence, we have

g1(t, s) ≥ −
(1− s)α−1

2Γ(α)
−

(1− s)α−2

8Γ(α− 1)
, for 1/4 ≤ t ≤ 3/4

max
0≤t≤1

g1(t, s) ≤
2(1− s)α−1 − (1− s)α−1

2Γ(α)
+

(1− s)α−2

4Γ(α− 1)
≤

(1− s)α−1

2Γ(α)
+

(1− s)α−2

4Γ(α− 1)

min
1/4≤t≤3/4

g2(t, s) = g2(3/4, s) = −
(1− s)α−2

8Γ(α− 1)
−

(1− s)α−1

2Γ(α)

max
0≤t≤1

g2(t, s) = g2(0, s) =
(1− s)α−2

4Γ(α− 1)
−

(1− s)α−1

2Γ(α)

<
(1− s)α−1

2Γ(α)
+

(1− s)α−2

4Γ(α− 1)

Thus we have,

min
1/4≤t≤3/4

G(t, s) ≥ h(s) = −
(1− s)α−1

2Γ(α)
−

(1− s)α−2

8Γ(α− 1)
, s ∈ [0, 1) (10)

max
0≤t≤1

G(t, s) ≤ H(s) =
(1− s)α−1

2Γ(α)
+

(1− s)α−2

4Γ(α− 1)
, s ∈ [0, 1) (11)

6
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Let

|χ| =

∣

∣

∣

∣

h(s)

H(s)

∣

∣

∣

∣

=
|h(s)|

|H(s)|

=

∣

∣

∣

∣

1

2

(

−4(1− s)α−1 − (α− 1)(1− s)α−2

2(1− s)α−1 + (α− 1)(1− s)α−2

)∣

∣

∣

∣

=
1

2

(

4(1− s)α−1 + (α− 1)(1− s)α−2

2(1− s)α−1 + (α− 1)(1− s)α−2

)

, s ∈ (0, 1) (12)

Hence |χ(s)| ∈ C((0, 1), (0,+∞)).
This completes the proof.

Remark 3.1. From the above lemma we assume that, |χ(s)| ≥
1

4
.

M = C[0, 1] have the ordering x ≤ v if x(t) ≤ v(t)∀ t ∈ [0, 1] and the maximum
norm ‖x‖ = max0≤t≤1 |x(t)|. The cone K ⊂M is defined by

K =

{

x ∈M | x(t) ≥ 0, min
1/4≤t≤3/4

≥
1

4
‖x‖

}

and the non-negative continuous concave functional Ψ on the cone K is given by

Ψ(x) = min
1/4≤t≤3/4

|x(t)|

Lemma 3.3. Assume that f(t, x) is continuous on [0, 1] × [0,∞). A function
u ∈ K is a solution of the given boundary value problem iff it is a solution of the
integral equation(3).
Proof. Let x ∈ K be the solution of the given boundary value problem. Applying
the operator Iα0+ to both sides of (1), Then we have

x(t) = c1 + c2t+ Iα0+f(t, x(t))

for some constants c1, c2 ∈ R. By using the boundary conditions and by the same
method obtaining the Green’s function of the problem (1), calculate the constants
c1 and c2, so

x(t) =

∫ 1

0

G(t, s)f(s, x(s))ds

Since from the above lemma we get that
∫ 1

0
G(t, s)f(s, x(s))ds ∈ K. Hence u is

7
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also a solution of the integral equation
∫ 1

0
G(t, s)w(s)ds. By applying the Caputo’s

fractional operator to both the sides of the integral equation (3) and denoting the
right hand side of the integral equation by Z(t), then by the definition of function
G(t,s),

Z(t) =

∫ 1

0

G(t, s)f(s, x(s))ds

=
1

Γ(α)

∫ t

0

(t− s)α−1w(s)ds−
1

2Γ(α)

∫ 1

0

(1− s)α−1w(s)ds

+
1

4Γ(α− 1)

∫ 1

0

(1− s)α−2w(s)ds−
t

2Γ(α− 1)

∫ 1

0

(1− s)α−2w(s)ds

Therefore,

Z ′(t) =
d

dt
Iα0+f(t, x(t))−

Iα−1
0+ f(1, x(1))

2

= D1
0+I

α
0+f(t, x(t))−

Iα−1
0+ f(1, x(1))

2

= D1
0+I

1
0+I

α−1
0+ f(t, x(t))−

Iα−1
0+ f(1, x(1))

2

= Iα0+f(t, x(t))−
Iα−1
0+ f(1, x(1))

2

and

Z ′′(t) =
d

dt
Iα−1
0+ f(t, x(t))

= D1
0+

1

Dα−1
0+

f(t, x(t))

= D1
0+D

−α+1
0+ f(t, x(t))

Z ′′(t) = D−α+2
0+ f(t, x(t))

and

Z ′′(t)I2−α
0+ = f(t, x(t))

Dα
0+Z(t) = I2−α

0+ Z ′′(t) = D2−α
0+ I2−α

0+ f(t, x(t)) = f(t, x(t))

here, the relations Is0+I
t
0+g(t) = Is+t

0+ g(t), Ds
0+I

s
0+g(t) = g(t), s > 0, t > 0, g ∈

L(0, 1) and Is0+D
s
0+g(t) = g(t),s > 0, g ∈ C[0, 1] and used, where Ds

0+ is a Riemann
- Liouville fractional derivative. That is, Dα

0+x(t) = f(t, x(t)). Now,

x(0) =

∫ 1

0

(1− s)α−2

4Γ(α− 1)
−

(1− s)α−1

2Γ(α)
f(s, x(s))ds

8
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x(1) =

∫ 1

0

(1− s)α−1

2Γ(α)
−

(1− s)α−1

4Γ(α− 1)
f(s, x(s))ds

x′(0) = −
1

2

∫ 1

0

(1− s)α−2f(s, x(s))ds

x′(1) =
1

2

∫ 1

0

(1− s)α−2f(s, x(s))ds

Therefore we obtain , x(0) + x(1) = 0, x′(0) + x′(1) = 0, which implies x ∈ K is a
solution (1).

Lemma 3.4. Assume that f(t, x) is continuous on [0, 1] × [0,∞) and the op-
erator Q : K →M is defined by

Qx(t) =

∫ 1

0

G(t, s)f(s, x(s))ds

Then Q : K → K is completely continuous.
Proof. From the expression of Green’s function it is clear that, Qx(t) ≥ 0,
t ∈ [0, 1], Qx(t) is continuous for x ∈ K. Then by Lemma (3.1) and remark (3.1),
we have

min
1/4≤t≤3/4

Qx(t) = min
1/4≤t≤3/4

∫ 1

0

G(t, s)f(s, x(s))ds ≥
1

4

∫ 1

0

H(s)f(s, x(s))ds

and

‖Qx‖ = max
0≤t≤1

|Qx(t)| ≤

∫ 1

0

H(s)f(s, x(s))ds.

Thus, we get

min
1/4≤t≤3/4

Qx(t) ≥
1

4
‖Qx‖

which implies Q : K → K.
Let R ⊂ K be bounded. That is there exists a positive constant L > 0 such

that ‖x‖ ≤ L, for all x ∈ R. Let H = max0≤t≤1,0≤u≤L |f(t, x)|+ 1, then for x ∈ R,
from lemma(3.1) we have,

|Qx(t)| ≤

∫ 1

0

|G(t, s)f(t, x(s))| ds ≤ H

∫ 1

0

H(s)ds

9
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Hence, Q(R) is bounded. For all ǫ > 0, each x ∈ R, t1, t2 ∈ [0, 1], t1 < t2, let

δ = min

{

1

2
,
2Γ(α)ǫ

6H
,
Γ(1 + α)ǫ

8H

}

Now we shall prove that |Qx(t2)−Qx(t1)| < ǫ, when t2 − t1 < δ.
Consider

=

∣

∣

∣

∣

∫ 1

0

G(t, s)f(s, x(s))ds−

∫ 1

0

G(t, s)f(s, x(s))ds

∣

∣

∣

∣

≤

∫ t1

0

|(G(t2, s)−G(t1, s))f(s, x(s)| ds+

∫ 1

t2

|(G(t2, s)−G(t1, s))f(s, x(s)| ds

+

∫ t2

t1

|(G(t2, s)−G(t1, s))f(s, x(s)| ds

≤ H(

∫ t1

0

|(G(t2, s)−G(t1, s))| ds+

∫ 1

t2

|G(t2, s)−G(t1, s))| ds

+

∫ t2

t1

|G(t2, s)−G(t1, s))| ds)

= H(

∫ t1

0

2[(t2 − s)α−1 − (t1 − s)α−1]− (1− s)α−1

2Γ(α)
+

(2t2 − 2t1)(1− s)α−2

4Γ(α− 1)

+

∫ 1

t2

(2t2 − 2t1)(1− s)α−2

4Γ(α− 1)
−

(1− s)α−1

2Γ(α)

+

∫ t2

t1

2(t2 − s)α−1 − (1− s)α−1

2Γ(α)
+

(2t2 − 2t1)(1− s)α−2

4Γ(α− 1)
)ds

= H(

∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
+
δ(1− s)α−2

2Γ(α− 1)
+

∫ 1

t2

δ(1− s)α−2

2Γ(α− 1)

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
+
δ(1− s)α−2

2Γ(α− 1)
)ds

≤ H

(

tα2 − tα1
Γ(α + 1)

+
δ

2Γ(α)
+

δ

2Γ(α)
+

2δα

Γ(α + 1)
+

δ

2Γ(α)

)

= H

(

3δ

2Γ(α)
+

2δα + (tα2 − tα1 )

Γ(α + 1)

)

< H

(

3δ

2Γ(α)
+

2δ + (tα2 − tα1 )

Γ(α + 1)

)

In order to estimate tα2 − tα1 , for δ ≤ t1 < t2 ≤ 1, by means of mean value theorem
we have,

tα2 − tα1 ≤ α(t2 − t1) < αδ ≤ 2δ

10
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for 0 ≤ t1 < δ, t2 < 2δ, we have

tα2 − tα1 ≤ tα2 < (2δ)α ≤ 2δ

for 0 ≤ t1 < t2 ≤ δ, we have

tα2 − tα1 ≤ tα2 < δα < 2δ

Hence, we get

|Qx(t2)−Qx(t1)| <
3Hδ

2Γ(α)
+

4Hδ

Γ(α + 1)

<
ǫ

2
+
ǫ

2
= ǫ

Therefore by Arzela - Ascoli theorem, Q : K → K is completely continuous.

Theorem 3.5. Assume that f(t, x) is continuous on [0, 1] × [0,∞), and satis-
fies one of the following conditions

(H1) There exist 0 < η1, ζ1 ≤ 1 such that

lim
x→∞

f(t, x(t))

xη1
= 0, lim

x→0

f(t, x(t))

xζ1
= ∞

for all t ∈ [0, 1].
(H2) There exist η2, ζ2 ≥ 1 such that

lim
x→∞

f(t, x(t))

xη2
= ∞, lim

x→0

f(t, x(t))

xζ2
= 0

for all t ∈ [0, 1].
Then the problem (1) has one positive solution.
Proof. It is enough to consider existence of fixed point of operator Q in K.
It follows from the above lemma that Q : K → K is a completely continuous
operator. Assume that (H1) holds, then there exist M1 > 0,M2 > 0, such that
for all

0 < ǫ <

(

2

∫ 1

0

H(s)ds

)−1

and ρ >
16

∫ 3/4

1/4
H(s)ds

> 0

Then

f(t, x(t)) ≤ ǫxη1 , for t ∈ [0, 1], x ≥M1

f(t, x(t)) > ρxη1 , for t ∈ [0, 1], 0 ≤ x ≤M2
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So we have

f(t, x(t)) ≤ ǫuη1 + c, fort ∈ [0, 1], x ∈ [0,+∞)

where

c = max
0≤t≤1,0≤x≤M1

|f(t, x(t)|+ 1

Let
ψ1 = {x ∈ K; ‖x‖ < R1}

where R1 >
{

1, 2c
∫ 1

0
H(s)ds

}

. For x ∈ ∂ψ1, from the Lemma (3.2), we have

|Qx(t)| =

∫ 1

0

G(t, s)f(s, x(s))ds

≤

∫ 1

0

H(s)(ǫ|u|η1 + c)ds

≤ ǫRη1
1

∫ 1

0

H(s)ds+ c

∫ 1

0

H(s)ds

≤
R1

2
+
R1

2
= R1

Hence ‖Qx‖ ≤ R1 = ‖x‖
Let ψ2 = {x ∈ K; ‖x‖ < R2}
where 0 < R2 < {1,M2}, then for x ∈ ∂ψ2, we obtain

|Qu(t)| =

∣

∣

∣

∣

∫ 1

0

G(t, s)f(s, x(s))

∣

∣

∣

∣

≥

∫ 1/4

3/4

G(t, s)f(s, x(s))ds

>
ρ

4

∫ 3/4

1/4

H(s)x(s)ζ1ds

≥
ρ

16

∫ 3/4

1/4

H(s) ‖u‖ζ1 ds

≥
ρ

16

∫ 3/4

1/4

H(s)R2ds

> R2 = ‖x‖

12
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‖Qx‖ ≥ R2 = ‖x‖.
Hence the lemma (2.3) implies that the operator Q has one fixed point x∗(t) ∈
ψ̄1|ψ2. Then x

∗(t) is one positive solution of the given problem(1).
Similarly assume that (H2) holds, then there exist S1 > 0, S2 > 0, such that for
all

0 < ǫ <

(∫ 1

0

H(s)ds

)

and τ >





∫ 3/4

1/4
H(s)ds

16





−1

> 0

Then we have

f(t, x(t)) > τuη2 , f ort ∈ [0, 1], x ≥ S1

f(t, x(t)) ≤ ǫxζ2 , for t ∈ [0, 1], 0 ≤ x ≤ S2

Let

ψ1 = {x ∈ K; ‖x‖ < R1} and

ψ2 = {x ∈ K; ‖x‖ < R2}

where R1 > {1, 4S1}, 0 < R2 < {1, S2}. Then we have

|Qx(t)| ≥

∣

∣

∣

∣

∣

∫ 3/4

1/4

G(t, s)f(s, x(s))ds

∣

∣

∣

∣

∣

≥
τ

16

∫ 3/4

1/4

H(s) ‖x‖η2 ds

≥
τ

16

∫ 3/4

1/4

H(s) ‖x‖ ds

> R1 = ‖x‖

for x ∈ ∂ψ2, we have

|Qx(t)| ≤

∫ 1

0

H(s)ǫ ‖x‖ζ2 ds

≤ ǫR2

∫ 1

0

H(s)ds

≤ R2

Then the lemma (2.3) implies that the operator Q has one fixed point x∗(t) ∈
ψ̄1|ψ2, Hence x

∗(t) is a positive solution of the given problem.
Hence the proof.
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IV. ILLUSTRATIVE EXAMPLE

In this section we provide an example to illustarte the execution of the main result
Consider the problem

Dα
0+x(t) =

1

12α

(

1

1 + x2

)

cos(2πt), t ∈ [0, 1], 1 < α ≤ 2

Consider

f(t, x(t)) =

(

1

1 + x2

)

(13)

Now apply (13) in (H1) and (H2) we get

lim
x→∞

f(t, x(t))

x
= lim

x→∞

1

(1 + x2)x

= lim
x→∞

1

x2( 1
x2 + 1)x

= 0

similarly

lim
x→0

f(t, x(t))

x
= lim

x→0

1

(1 + x2)x

= lim
x→0

1

x2( 1
x2 + 1)x

= ∞

Hence the solution.
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