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Abstract— Big Data though it is a hype u p-s pring ing  m a ny  
technical challenges that confront both academic research 

communities and commercial IT deployment, the root sources of 

Big Data are founded on data streams. It i s  g e nera lly  k n own  

that data which are sourced from data streams accumulate 

continuously making traditional batch -based model i n duct io n 

algorithms infeasible for real-time data mining o r h i g h-spe ed 

data analytics in a broad sense. In this paper, a novel data 

stream mining methodology, called Stream -based Holistic 

Analytics and Reasoning in Paralle l (SHARP) is proposed. 

SHARP is based on principles of incremental l ea rnin g  wh i ch 

span across a typical data-mining model construction  pro ce ss,  

from lightweight feature selection, one -pass incremental 

decision tree induction, and incremental swarm opt i miza t io n.  

Each one of these components in SHARP is designed to function 

together aiming at improving the classification/prediction 

performance to its best possible . SHARP is scalable , that 

depends on the available computing resources during ru nt im e, 

the components can execute in parallel, collectively e nha nci ng  

different aspects of the overall SHARP process for mining da ta  

streams. It is believed that if Big Data are being mined by 

incrementally learning a data mining model, one pass at a  t i m e 

on the fly, the large volume of such big data is no longer a 

technical issue, from the perspective of data a n a ly ti cs.  Th re e  

computer simulation experimentations are shown in this pape r,  

pertaining to three components of SHARP, for demo n stra ti ng  

its efficacy.  
Keywords- Data stream mining methodology; Cache-based 

data stream classifier; CCV feature selection; Meta-heusristics 
 

I. INTRODUCTION  
 

Recently a lot of news in the media advocates the hype of Big 

Data that are manifested in three problematic issues. They are the 

3V challenges known as: Velocity problem that gives rise to a huge 

amount of data to be handled at an escalating high speed; Variety 

problem that makes data processing and integration difficult because 

the data come from various sources and they are formatted 

differently; and Volume problem that makes storing, processing, 

and analysis over them both computational and archiving 

challenging.  
In views of these 3V challenges, the traditional data mining 

approaches which are based on the full batch-mode learning may 

run short in meeting the demand of analytic efficiency. That is 

simply because the traditional data mining 
model construction techniques require loading in the full  

 

 

set of data, and then the data are partitioned according to some 

divide-and-conquer strategy; two classical algorithms are CART 

decision tree induction [1] and Rough-set discrimination [2]. 

Each time when fresh data arrive, which is typical in the data 

collection process that makes the big data inflate to bigger data, 

the traditional induction method needs to re-run and the model 

that was built needs to be built again with the inclusion of new 

data.  
In contrast, the new breed of algorithms known as data stream 

mining methods [3] are able to subside these 3V problems of big 

data, since these 3V challenges are mainly the characteristics of data  

streams. Data stream algorithm is not stemmed by the huge volume 

or high speed data collection. The algorithm is capable of inducing a  

classification or prediction model from bottom-up approach; each 

pass of data from the data streams triggers the model to 

incrementally update itself without the need of reloading any 

previously seen data. This type of algorithms can potentially handle  

data streams that amount to infinity, and they can run in memory 

analyzing and mining data streams on the fly. It  is regarded as a 

killer method for big data hype and its related analytics problems. 

Lately researchers concur data stream mining algorithms are meant 

to be solutions to tackle big data for now and for the future year s t o  

come [4][5].  
Although there are not short of algorithms in the computer 

science and machine learning areas for incremental learning, a 

holistic approach in summing up different aspects of data stream 

mining with the aim of improving the ultimate accuracy 

performance is needed. In this paper, we propose a novel data 

stream mining methodology. It  is called Stream-based Holistic 

Analytics and Reasoning in Parallel (or SHARP in short) which is 

based on principles of incremental learning and lightweight 

processing. SHARP is comprised of several components which 

cover a typical data-mining model construction process. They are 

lightweight feature selection, one-pass incremental decision tree 

induction, and incremental swarm optimization. Each one of these 

components in SHARP is supposed to complement each other 

towards the common objective of improving the 

classification/prediction performance as a whole. SHARP is scalable 

in computation; additional CPUs can be included in parallel for 

increasing the execution threads of independent  
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performance enhancement. The benefits of SHARP include 

attaining the highest possible prediction accuracy while maintainin g 

the computation as lightweight as possible; some components can be 

run independently thereby allowing parallel processing and scalable 

solution; and the operation of SHARP is in stochastic manner 

implying the longer it  runs for, the better the performance it  can 

achieve.  
The remaining of the paper is structured as follow. 

Section 2 describes the SHARP methodology and its 
components in full details. Section 3 presents three computer 
simulation experimentations for validating the efficacy of 
SHARP components for data mining big data. Section 4 
concludes the paper. 
 

II. SHARP METHODOLOGY   
To the best of the authors’ knowledge there is no methodology 

for data stream mining in the academic literature, especially that 

covers an optimizer for fine-tuning the performance in real-tim e.  A 

model of SHARP processes which aims to shed light in the 

methodology of data stream mining is shown in Figure 1. It  includes 

several components that work cooperatively together during the data 

stream mining operation. The components are; 1. Cache Receiver 

(CR); 2. Incremental Classifier (IC); 3. Incremental Feature 

Selection Module (IFS); 4. Factor Analysis Module (FA); and 5. 

Swarm Optimizer (SO). The methodology offers a holistic approach  

which takes care of most if not all the possible aspects in data 

mining for improving performance. These five components are 

meant for achieving the following objectives respectively: CR-

objective is to subside the problems of missing/incomplete data; IC-

objective is to enable stream forecasting/prediction/classification by  

incremental learning manner; IFS and FA- objective is to understand 

the reasons and influences of the respective data attributes towards 

the predicted class; and SO- objective is to fine-tune the parameter 

values including selecting the optimal feature subset regularly. All 

these components contribute to the overall performance 

improvement, and they can function concurrently as the data stream  

in. 
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Figure 1: SHARP processes 

 
The multiple rectangles in Figure 1 that represent IC and SO 

respectively, depict the possibility that these processes can run 

concurrently over some parallel computing devices. 

The components are briefly described as follow. It is 
acknowledged that there exist many possible solutions or 
algorithms for implementing these components. Our 
discussion however highlights only some of the state-of-the-

arts developed from our previous projects. The methodology  
serves as an abstract guideline on the possible integration  o f 
several data streaming components, discussing their 
functions (rather than implementation), interfaces and 

advantages.  
A. Cache Receiver (CR)  

The cache receiver is a front -end pre-processing mechanism that 

holds certain amount of data from the incoming data stream for a 

while. The main function is to minimize the latency of data ar r iv als 

as it  is possible and likely that data streams that are being 

aggregated from various sources would be received at different 

speeds. CR acts as a delay regulator and buffer allowing 

opportunities for efficient data cleansing mechanism to operate 

upon, in real-time. It  is not uncommon that data streams are st a in ed 

with noise and incomplete information; techniques have been 

proposed and studied previously. The techniques [6] mainly 

centered on delivering and synchronizing the cache-buckets, 

estimating missing data, and detecting and alleviating concept -drift  

problems etc. CR also handles other basic data pre-processing tasks 

similar to those for traditional data mining in the KDD process. Data 

stream is partitioned into two portions, one is for training t h at  go es 

to the IFS and the other one is for testing at the IC.  
B. Incremental Classifier (IC)  

Many choices exist when it  comes to data stream mining 

algorithms such as those which are available on Massive Online 

Analysis (MOA) [7] developed by University of Waikato, New 

Zealand. Some popular algorithms include but not limited to: 

Decision Stump, Hoeffding Tree, Hoeffding Option Tree, Hoeffding 

Adaptive Tree, and ADWIN etc. The algorithms have a common 

design basis that works by incremental learning approach. The 

model gets rebuilt  partially by only seeing enough samples that are 

qualified (or biased) for growing an additional decision tree branch 

(or rule). In such way, the model in induced progressively from 

scratch to a full-grown mature decision tree which has seen enough 

data stream samples, being able to recognize the mappings between 

the attributes and the target classes.  
Out of the many implementation, lately there is a decision tree 

design called “Cache-based Classifier” (CBC) which is claimed to 
be able to detect and overcome the problem of concept -drift  [ 8 ] .  I n  

this particular design, CBC has an auxiliary data cache similar to 

CR from which data are copied to a Decision Table Classifier 

(DTC) and a Main Tree Classifier (MTC). While the MTC remains 

as the main classifier from which the output result is derived, the 

main function of DTC is only to test if a concept drift  has o ccur red 

hence the need of refreshing the MTC is assured. By this logic, 

MTC is spared from excessive updating and its accuracy is not 

diluted unless a concept drift  happens at the incoming data streams. 

A loss function is defined by counting simple statistics of the 

frequencies of agreement  
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and disagreement between the predicted outputs by DTC and MTC 

respectively. The counting method is in Eqn. 1 and 2. 
 
 

 
(1) 

 
 

(2) 

where yk is the predicted value at k th iteration, the Loss 
variables are counters for the classifiers, T is the number o f 
times both predicted values are in agreement, F is the count  
of otherwise.  

A coefficient Pk is used as a normalized single factor for 

deciding whether a decision tree should grow by inducing an 

additional tree path. Pk is defined in Eqn. 3 and 4. 
 

 
(3) 

 

 
(4) The values of the variables are remembered between the 

current and the previous steps, and they do get updated when 

fresh data arrives. If it were detected that current Pk  < 

previous Pk-1  , it indicates that the accuracy of MTC is  

declining, and the need for updating to be updated by εk 
which is defined by Eqn. 5, materializes. 

 
 

(5) This dual concept of test-first-before-update leads to 

good  accuracy,  compact  tree  size  and  fast  processing. 
Furthermore,  CBC  is  scalable  in  nature  implying  the 

possibility of parallel processing. For instance, the DTC and 
MTC can be made as independent processes. The design of  

CBC can be extended by incorporating with multiple MTC’s  
like an ensemble tree which is very common in traditional 
data mining. Each MTC could well be implemented by 
different incremental learning algorithms; the prediction 
result is to be taken from one winner among all the models 
that outperforms the rest.  
C. Incremental Feature Selection Module (IFS)   

The objective of this module is twofold; one is supposed to 

shrink down the total combination of feature subsets by simple 

selection algorithm, the other is to reason about the importance of 

the attributes with respective to the predicted classes, such as 

attribute scoring. There are plenty of available algorithms for 

incremental feature selection. Some popular ones include Grafting 

[9] which is based on the heuristic of gradient descent in function 

space, some is based on rough set theory on dynamic incomplete 

dataset [10], and the incremental feature ranking method over 

dynamic feature space [11], to just name a few. 

One of the latest state-of-arts called Clustering Coefficients of 

Variation (CCV) is relatively simple hence suitable for lightweight 

computation in SHARP. CCV is founded on a basic belief that a 

good attribute in a training dataset should have its data vary 

sufficiently wide across a range of values, so that it  is significant to 

characterize a useful prediction model. The coefficient of variation 

(CV) is expressed as a real number from - to + and it  describes the 

standard deviation of a set of numbers relative to their mean. I t  can  

be used to compare variability even when the units are not the same.  

In general CV informs us about the extent of variation relative to the 

size of the observation, and it  has t he advantage that the coefficien t  

of variation is independent of the units of observation. The 

coefficient of variation, however, will be the same over all the 

features of a dataset as it  does not depend on the unit of 

measurement. So you can obtain information about the data 

variation throughout all the features, by using the coefficient of 

variation to look at all the ratios of standard deviations to mean in 

each feature. Intuitively, if the mean is the expected value, then  t h e 

coefficient of variation is the expected variability of a measurement,  

relative to the mean. This is useful when comparing measurements 

across multiple heterogeneous data sets or across multiple 

measurements taken on the same data set – the coefficient of 

variation between two data sets, or calculated for two attributes of 

measurements in the case of feature selection, can be directly 

compared, even if the data in each are measured on very different 

scales, sampling rates or resolutions. In contrast, standard deviation 

is specific to the measurement/sample it  is obtained from, i.e. it  is an 

absolute rather than a relative measure of variation. In statistics, it  is 

sometimes known as measure of dispersion, which helps compare 

variation across variables with different units. A variable with 

higher coefficient of variation is more dispersed than one with lower  

CV. Readers are referred to [12] for the formulation and details. In 

the case of SHARP, CCV helps to shrink the feature space by 

eliminating the disqualified features (by the CV principle) and the 

combinations of such features. The feature space that has been 

reduced in size will then been used by the SO for finding the most 

optimal feature subset by metaheuristics search algorithms.  
D. Factor Analysis Module (FA)  

IFS and FA are usually work together (or in parallel as in 

SHARP), having IFS to produce the selected features and FA offers 

insights about the significance of attributes to the predicted classes. 

In general, this method is to correlate a large number of features in a  

dynamic dataset with an outcome variable, such as the predicted 

class. Computationally this is done by scoring each feature by some 

statistical means (correlation is one of them). The other types of 

feature scoring exist such as gain ratio, information gain, Chi-square 

evaluation, etc. that have similar methods for scoring. As a result  o f  

FA, a list  of features sorted by values in ascending or descending 

order would be produced; their rankings could be visualized too. It  

offers insights to users about the importance of each attribute for 

inquisitives. 
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E. Swarm Optimizer (SO)  

A swarm optimizer is essentially a search module that looks for 

optimal parameter values of the classifier in use, and the optimal 

feature subset for the IC module. SO takes the out put of IFS which 

is a reduced search space of feasible combinations of feature subsets 

as input. Multiple search agents, which often are inspired by natural 

phenomena or behaviors of biological creatures, scout over the 

search space for the optimum solution. The search operation is in 

parallel as these multiple agents are working autonomously but 

collectively through some stochastic process. The search iterates 

through generations, thereby evolving the solution to an optimum 

one at the end. Some researchers call such methods meta-heuristics 

as it  is meant to be a high-level strategy (therefore the name met a - )  

that guides the underlying heuristic search in achieving a goal. In 

the case of SHARP, SO is an optimized implemented by Swarm 

Search [13] which is a latest search method for finding the optimum  

feature subset using meta-heuristics from large datasets.  
Swarm Search is particular useful for datasets that are 

characterized by a very large amount dimensionalities, so called 

features. Although the meta-heuristics is generic which is able to 

integrate any type of bio-inspired optimization algorithms into 

any type of classifier (at least theoretically), the work by [13] 

tested 9 different combinations – three classifiers: neural 

network, decision tree, and Naïve Bayes, and three bio-inspired 

optimization algorithms: Wolf Search Algorithm, Particle 

Swarm Optimization and Bat Algorithm.  
For SHARP that demands for incremental learning and therefore 

progressive search for the best feature subset, Swarm Search should 

be configured to embed with only incremental algorithms, like those 

mentioned in Section IIB. Depending on the setup at IC which may 

be an ensemble method where multiple classifiers are being tested, 

the most accurate model got selected, SO should operate in parallel 

too having each execution thread corresponds to each candidate 

classifier as in IC. The composite optimization applies where the 

possible parameters values and the possible feature subsets search 

space are blended together into a large search space, over which the 

Swarm Search attempts to find the best combination. This approach  

was pioneered by Iztok et al in [14]. 
 

III. EXPERIMENTS   
In order to validate efficacy of SHARP, three sets of 

experimentation are shown hereafter, with each set tests on  some o f  

the core components of SHARP such as IC, IFS and SO. The 

datasets being used are big data, not only in volume but they are 

large in number of features that pose great computational challenges 

in data stream mining. All the experiments run on a Windows 7  6 4 -

bit workstation with Intel Quad 2.83 GHz processor and 8 Gb RAM.  
A. Testing Performance of CBC as IC  

In this experiment, CBC is tested versus two state-of-the-art dat a  

streams mining algorithms, namely HOT [15] and ADWIN [16]. 

The representative big data is Cover-type data 

that are available for free download from the UCI data archive 

(www.ics.uci.edu/~mlearn). It  has 42 categorical attributes and 12 

continuous attributes, for predicting seven types of cover lands. Th e 

number of instances is 581,012.  
The CBD is comprised of DTC+MTC with varying window 

sizes and it uses node-splitting bound computed from the loss 

function in Eqn 2. The selected window sizes (ws) are 50, 200, 

500, and 1000. For τ = 0.05 which is a default value by MOA 

for controlling the learning speed, accuracy is better when ws = 

50 and ws = 500, but the tree becomes larger than it does with 

the other ws. The classifier attains higher accuracy but smaller 

tree size than HOT. Furthermore, when ws = 50, the accuracy is 

better and the tree size is reduced compared with ADWIN. The 

performance comparison is shown in Figures 2 and 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: CBC performance by accuracy with τ = 0.05 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: CBC performance by tree size with τ = 0.05 
 

As it can be seen from Figure 2, CBC (which are named as 

HT that stands for Hoeffding Tree) in the right setting 

combination of τ and ws, is able to outperform HOT and 

ADWIN. For the tree size in Figure 3, which is presumed to be 

the smaller the better with less memory space required in run-

time, HOT and ADWIN requires more than CBC. One 

shortcoming however is the requirement of manually setting the 

right values of parameters for the algorithms to run. 

Nevertheless it can be shown that CBC is able to achieve good 

accuracy and compact tree size. This strongly suggests that 

integrating with SO for finding the right parameters values are 

imperative, especially when different versions of MTC 

implemented by different algorithms are running in parallel. 
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B. Testing Performance of CCV as IFS  

In order to validate the effectiveness of a simple and lightweigh t  

feature selection algorithm, called CCV, versus the other existing 

methods, we test them on forty-four different datasets from UCI 

using four popular classification algorithms in data mining, namely 

ADABoost, J48 decision tree, Naïve Bayes and SMO. We compare 

the performance of CCS against the four classical ones like 

Correlation-based  
(CFS), Consistency-based (Consist) and Relief-based (Relief)  
Subset Evaluation methods, and Principle Component 
Analysis (PCA). A typical 10-fold cross-validation is used to 
valid and generate the outputs of performance indicators in  
each test.  

The forty-four datasets are first preprocessed by the different  

feature selection algorithms. After that they are processed in 

turn by each one of the four classification algorithms, and then 

the results are averaged out. The performance results are 

expressed in terms of Accuracy (number of correctly classified 

instances over the total number of instances), pre-processing 

time (which is crucial in SHARP that demands for high-speed 
processing), and the percentage of attributes being selected. The 

results are shown in Table 1. 
 

Table 1: Averaged performance results of feature selection methods by 

classification models built over the forty-four datasets 
Feature selection method Accuracy Time (ms) % Selected Features 
CCV 0.7749 2 6 298.0681 8 2 62.466024 22 
CFS 0.7493 7 1 109.7272 7 3 11.045218 68 
Relief 0.7549 5 5 56426.15 9 1 66.790214 97 
Consist 0.7377 3 3 1269.818 1 8 9.9332839 14 
PCA 0.7281 3 1 3717.295 4 5 75.142080 55 

875, are obtained from UCI. They are called Lung Cancer, Heart 

Disease, Libra Movement, Hill Valley and CNAE.  
The following comparisons show that different couple of 

meta-heuristics and classification algorithms for different 

datasets yield variable results, as showing in Figures 4, 5, and 6 

for classification error comparison and Figures 7, 8 and 9 for 

time consumption comparison. 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Swarm Search error comparison, with Neural Network 

 
 
 
 
 
 
 
 
 
 

 
Figure 5: Swarm Search error comparison, with Decision Tree 

 
As it  can be observed from Table 1, CCV rates second after CFS 

for speed, which is far shorter the time when compared with the 

other three feature selection algorithms – Relief, Consist and PCA. 

The accuracy achieved by CCV is the highest, and it  can retain a 

moderate amount of features.  
When CCV is applied in SHARP, it exhibits supposedly 

the benefits of producing a moderate size of reduced s earch  
space (in terms of features and their combinations), at a 
reasonable run-time speed, and the search space would be 
likely to produce good accuracy for the classification 
algorithms in IC. 
 
C. Testing Performance of Swarm Search as SO  

Swarm Search is a vital part of SO that searches for the optimal 

feature subset given the reduced search space of feasible feature 

combinations by IFS. There are many meta-heuristics available, 

however in this experiment, the same settings and collection of 

Swarm Search algorithms are used as in [13]. They are FS-PSO, 

FS-BAT and FS-WSA integrated with neural network, decision tree 

and Naïve Bayes classification algorithms. Though this is a 

preliminary experimentation with the aim of demonstrating the 

viability of Swarm Search to be used in SHARP, future experiments 

might be needed by integrating Swarm Search with incremental 

algorithms, particularly with CBC. Five testing datasets with 

varying number of features, ranging from 56 to 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 

Figure 6: Swarm Search error comparison, with Naïve Bayes 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Swarm Search time comparison, with Neural Network 
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Figure 8: Swarm Search time comparison, with Decision Tree 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Swarm Search time comparison, with Naïve Bayes 

 
The variable results as shown from the above Figures testify 

the need of multiple tests that are supposed to run in parallel, 

from which the best performance collection of meta-heuristics as 

well as the classification algorithms and the related parameters 

values are required to be chosen out. This could only be made 

possible by parallel computation where different combos are 

tested on individual processor and execution thread. The 

SHARP methodology allows and encourages SO to operate on 

some appropriate parallel computing devices. 
 
 

IV. CONCLUSION  
In this paper, a scalable data stream mining called Stream-based 

Holistic Analytics and Reasoning in Parallel (SHARP) was 

introduced. SHARP is holistic because it  consists of several 

components and they target to improve different aspects of data 

mining functions such as smoothing the input data streams, reducin g 

the feature search space, finding the optimum feature subset, 

optimizing parameter values for the classifiers, and allowing 

incremental classifiers to go ensemble by spawning different 

classifiers in parallel. Preliminary experiments for three individual 

components have been tested and demonstrated superiority over 

existing methods. In the future, it  is planned that all the components 

would be fully integrated and tested as a holistic data stream mining 

system that can produce the best possible performance. It  is 

anticipated that SHARP is capable of eliminating some of the key 

problems in Big Data especially 

those associated with high-dimensionality and in fin ite and  

continuous data streams. 
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