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Abstract—This paper deals with the design, simulation and 

synthesis of flexible custom modules that can be used to im- 
plement the forward pass arithmetic in a Convolutional Neural 
Network (CNN). By using different designs explored in this work 
a trained Convolutional Neural Network can be implemented. 
The various components essential for the functioning of the 
trained network are identified and implemented as separate 
reusable modules, with various versions of same components 
focusing on different hardware usage. Numerous design logics are 
used to reduce computation, hardware utilization and complexity 
without compromising the performance of the Network.  One  
can choose the different designs according to the Convolutional 
Neural Network architecture, hardware availability and other 
functional requirements.This paper is implemented on Spartan   
6 defence grade low energy board using Xilinx project navigator 
ISE and Verilog HDL. 

Index Terms—Convolutional Neural Network (CNN),Field Pro- 
grammable Gate Array(FPGA). 

 
I. INTRODUCTION 

The field of Machine learning (ML) has been dedicated to 

the implementation of operation of intelligent conscience in 

machines for decades now, and it has made much advance in 

this effort [1]. The achievement has been a result of careful  

observation and understanding of other intelligent organism’s 
characteristics of intellectual growth and behavior. As a matter 

of fact the learning in ML is based on how living organisms 

learn through experience i.e., encountering a scenario reacting 

in a specific manner and analyzing the outcome to decide 

whether the reaction was acceptable or not and according to 

the analysis accept the reaction as proper procedure to tackle 

the scenario or retry scenario with different reactions till you 

find a favorable one. It is from this reasoning that those in   

ML decided to study the brain, the organ responsible for 

intelligence [2]. From monitoring the structure, constituents 

and functioning of the brain intelligence was further under- 

stood. It was observed that the network of neurons in the   

brain were responsible for learning and relearning different  

things. This process is implemented through different methods 

of learning in ML like supervised, regression or unsupervised 

learning. Each method has many types algorithms to tackle  

different tasks. From the attempt to implement the network of 

learning neurons in the brain we achieved Artificial neural 

networks [3] consisting of inter connected nodes, that can 

 

be trained to do  different  tasks.  There  are  different  types  

of neural networks such as deep neural networks, shallow 

neural networks, convolutional neural network (CNN) etc., 

these Neural Networks (NN) can be used to solve complex 

tasks once trained, but training, testing and using such NN can 

be complex, computationally costly, require lot of dedicated 

hardware resources and energy consuming. There have been   

a lot of attempts to solve these issues. Much research and 

modification have been done in the architectures, algorithms 

and hardware used for these NN. One such method gleamed 

from the working of the brain is that the learning and using of 

the learned information are done by different parts of the brain 

similarly, we can split the learning process and implementation 

of learned solutions in machines as well. This is found to       

be efficient as learning requires more resources, than the 

implementation of learned solutions. Also not every aspect of 

the learned solution is required at all times. Hence the relevant 

solutions are learned on highly resourceful hardware systems 

and are then transferred to and adaptively used on lower spec 

hardware in application specific situations as needed. This is of 

course done at the price of real time learning. But this method 

is more hardware, energy and cost efficient. This work will 

explore such a method. 

The specific NN explored in this work is the CNN [4], 

which is a major neural network used in the field of computer 

vision. CNN are based on the working of the visual neural 

network of the brain [5]. They have been used widely and 

research in this field has yielded many types of CNN [6] 

architecture tailored for different uses such as image classi- 

fication, object detection, natural language processing. These 

CNN are complex and highly energy consuming as well as 

computationally complex design and many work have been 

done to reduce these issues[7]. The complexity and hardware 

utilization is most for learning process involved where as the 

forward pass is very much straight forward and simple and 

there have been ideas where the learning and application of 

solution have been achieved on separate dedicated hardware 

[8][9]. This allows use of resource to be decentralized and 

used as needed. Here we aim to produce a modular design 

capable of implementing the forward pass of a CNN. Various 

functional units are observed and broken into sub units and 

they are implemented using different hardware logic to achieve 
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various versions that focus on speed, energy consumption and 

hardware use respectively. These are to be used according to 

application, CNN architecture and hardware availability. 

II. METHODOLOGY 

This paper will explore the design, simulation, synthesis, 

implementation and improvement of the forward pass hard- 

ware or learned solution executing hardware of a Convolu- 

tional neural network, on a Spartan 6 FPGA.Xilinx Navigator 

andVerilog HDL is used to design, simulate and synthesis the 

hardware modules. The training and validation of various CNN 

architecture are observed using TensorFlow 2 and  python. 

The layer wise operation of each component  is  observed.  

The layer wise implementation of the CNN architecture is 

achieved by identifying the various major layers that are used 

with in it, such as Convolutional layer, pooling layer, fully 

connected layer. The operations in each of these layers are 

studied and expressed in arithmetic formulae form. They are 

then implemented in hardware using most minimal hardware 

use. The complex arithmetic is  simplified  or  approximated 

or implemented using look up tables. The core  repetitive  

units of each layer are identified and they are implemented    

as modules using the least amount of hardware, complexity  

and operational steps. This is possible because NN are made 

of repeating units of node responsible for the learning and 

implementation of learned solution. The overall design will be 

such that by using user-controlled parameters one can control 

the amount of hardware resources used in each implementation 

as per device specification. The design will allow easy addition 

of custom modules, flexibility in module selection as per func- 

tional requirement, allowance of pipelining and parallelism of 

the hardware. Through the implementation and study of CNN 

in TenserFlow 2 it was found out that the major operations    

in the forward pass are Tensor Multiplication, Addition, Com- 

paration, and Division, all of this can be implemented using 

storage and shift Registers, sufficiently sized Accumulators, 

Mux and some basic gates. 

III. RESULTS AND OBSERVATIONS 

The most important component of CNN are its convolu- 

tional layer in which the neural network tries to recognize 

learned patterns in the input feature map. The idea of filters 

convolving over the input FM can be simplified as element 

wise multiplication of indexed matrices and subsequent sum- 

mation of these results. This is what happens in each node of  

a convolutional layer. There are many ways of implementation 

of the convolutional layer. Here we will explore the case 

where the filter weights and image pixels are given as inputs 

along with other synchronization and control signals the output 

feature map is received as  pixels  array.  The  data  type  of  

the input and output are binary integers. They are given and 

received from the modules as array of 16-bit sign data. For real 

values we use fixed point arithmetic as it reduces the hardware 

requirements, energy consumption and computational cost. 

Each module designed has a set of parameters that can be 

adjusted to control size of the data related to inputs output 

and sub module counts used. The tensor convolution which    

is the most important part of this layer can be achieved as 

follows. 

Segment input into filter size tensors then feed it to each 

node module. This process will require substantially more 

hardware but is less time consuming.  Another  way  is  to  

read the entire input  and  implement  apply  multiple  filters 

to different segments simultaneously which is also hardware 

exhaustive. The low hardware utilizing method is to identify 

the basic repeating  operation  and  use  the  module  of  it  in 

a synchronized scheduled fashion where the  overall  time  

may over shoot. But the time over shoot can be controlled 

using CNN fastening algorithms and methods such as FFT   

or depth wise and point wise separable  convolution.  The  

fully connected layer can be achieved from a convolutional  

layer by setting filter size equal to input and setting shift 

parameter to zero. All the operation in the Convolutional layer 

was seen to be achieved using accumulation as the key base 

factor hence using Accumulator, shift registers, multiplexers 

and logic gate low hardware module was designed, simulated 

and synthesized. Other relatively higher hardware consuming 
 

Fig. 1. input segmenting simulation result 

 
 

Fig. 2. Direct 2D convolution result 

 
 

Fig. 3. Direct 2D convolve module schematic top view and hardware use 

 

modules were also designed, simulated and synthesized for 

various comparative purposes. From the study of various CNN 

architecture in TensorFlow 2 it was observed that weight 

approximation to 1/1000 of the decimal place will not affect 

the performance of the model.The simulation results for input 

segmenting module is shown in figure 1 where  the  given 

input is stored in a memory block T as a 2D tensor. figure 
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2 shows the simulation result of a 2D convolve module result 

of direct convolution between two such tensors are shown in 

an internal memory module and also as a stream output. Figure 

3 shows the synthesis result for the above mentioned modules. 

The pooling layer was also implemented in such a way. The 

pooling aimed at reducing input data size involves a design 

where the filter inputs were removed and accumulators where 

the key operating elements. The simulation result of Maxpool 

module is shown in figure 4. followed by the synthesis result 

in figure 5. 

 

Fig. 4. Direct Maxpool simulation result. 

 

 
 

 

Fig. 6. lookup simulation result. 

 
 

Fig. 7. Softmax module schematic top view and hardware use of lookup 
module 

 

 

 

 

 

 

 

Fig. 5. Direct Maxpool module schematic top view and hardware use 

 
The activation functions used here are Softmax and ReLU 

for classification cases. Softmax is a computationally demand- 

ing module implemented using accumulators or lookup tables 

in different modules as the need arises.The simulation result  

of Softmax lookup is shown in figure 6 and synthesis result   

is shown in figure 7. along with the looup the softmax also 

use divider module whose synthesis result is shown in figure 

8. ReLU is achieved using Multiplexers and the sign bit of  

the input data. The simulation result of ReLU is shown in 

figure 9 and synthesis result is shown in figure 10. The input 

data to the higher-level modules are segmented and fed to sub 

modules as per submodule count. The results are approximated 

to fit the pre-set data size with addition of a scaling matrix  

that keep track of the quantitative size of approximated result 

in case of over flow. Values of low scale are approximated to 

null and null result operations are ignored using logic control. 

Thus reducing computation cost. The element wise matrix 

multiplication can be achieve using Verilog default multiplier, 

or custom multiplier consisting of a shift register and accumu- 

lator. the simulation result of both modules are shown in figure 

11 and synthesis result is shown in figure 12.13. The indexed 

element accessing is achieved using counters also implemented 

with shift register and accumulation. Comparators used for 

flow control can also be implemented using  accumulators  

and logic gates. The figure shows the result. The schematics, 

simulation result and hardware usage of accumulator are show 

 
Fig. 8. Divider module schematic and hardware use 

 

 

 

 

 

 

 

Fig. 9. ReLU simulation result. 

 
 

Fig. 10. ReLU module schematic top view and hardware use 
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Fig. 11. multipliers simulation result. Fig. 14. Accumulator module schematic, simulation result and hardware use 
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Fig. 13. Custom multiplier module schematic and hardware use 

 

 

in figure 14 . As one can see different modules have different 

hardware consumption and operation time. The two multiplier 

modules are one such example where the default one uses a 

DSP module where other resources are used sparingly and in 

the other DSP was not used while other modules were used 

more. Likewise each module has its on significance to enable 

implementation in various ways. 
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