
Design of Computationally Efficient Convolutional

Neural Network for Hardware Limited Operation

Jayakrishnan K S

Department of Electronics and Communication

College of Engineering Trivandrum

Thiruvananthapuram-16, India

jayakrishnanksk12@gmail.com

David Solomon George

Department of Electronics and Communication

College of Engineering Trivandrum

Thiruvananthapuram-16, India

david@cet.ac.in

Abstract—This paper deals with the design, simulation and

synthesis of flexible custom modules that can be used to im-
plement the forward pass arithmetic in a Convolutional Neural
Network (CNN). By using different designs explored in this work
a trained Convolutional Neural Network can be implemented.
The various components essential for the functioning of the
trained network are identified and implemented as separate
reusable modules, with various versions of same components
focusing on different hardware usage. Numerous design logics are
used to reduce computation, hardware utilization and complexity
without compromising the performance of the Network. One
can choose the different designs according to the Convolutional
Neural Network architecture, hardware availability and other
functional requirements.This paper is implemented on Spartan
6 defence grade low energy board using Xilinx project navigator
ISE and Verilog HDL.

Index Terms—Convolutional Neural Network (CNN),Field Pro-
grammable Gate Array(FPGA).

I. INTRODUCTION

The field of Machine learning (ML) has been dedicated to

the implementation of operation of intelligent conscience in

machines for decades now, and it has made much advance in

this effort [1]. The achievement has been a result of careful

observation and understanding of other intelligent organism’s
characteristics of intellectual growth and behavior. As a matter

of fact the learning in ML is based on how living organisms

learn through experience i.e., encountering a scenario reacting

in a specific manner and analyzing the outcome to decide

whether the reaction was acceptable or not and according to

the analysis accept the reaction as proper procedure to tackle

the scenario or retry scenario with different reactions till you

find a favorable one. It is from this reasoning that those in

ML decided to study the brain, the organ responsible for

intelligence [2]. From monitoring the structure, constituents

and functioning of the brain intelligence was further under-

stood. It was observed that the network of neurons in the

brain were responsible for learning and relearning different

things. This process is implemented through different methods

of learning in ML like supervised, regression or unsupervised

learning. Each method has many types algorithms to tackle

different tasks. From the attempt to implement the network of

learning neurons in the brain we achieved Artificial neural

networks [3] consisting of inter connected nodes, that can

be trained to do different tasks. There are different types

of neural networks such as deep neural networks, shallow

neural networks, convolutional neural network (CNN) etc.,

these Neural Networks (NN) can be used to solve complex

tasks once trained, but training, testing and using such NN can

be complex, computationally costly, require lot of dedicated

hardware resources and energy consuming. There have been

a lot of attempts to solve these issues. Much research and

modification have been done in the architectures, algorithms

and hardware used for these NN. One such method gleamed

from the working of the brain is that the learning and using of

the learned information are done by different parts of the brain

similarly, we can split the learning process and implementation

of learned solutions in machines as well. This is found to

be efficient as learning requires more resources, than the

implementation of learned solutions. Also not every aspect of

the learned solution is required at all times. Hence the relevant

solutions are learned on highly resourceful hardware systems

and are then transferred to and adaptively used on lower spec

hardware in application specific situations as needed. This is of

course done at the price of real time learning. But this method

is more hardware, energy and cost efficient. This work will

explore such a method.

The specific NN explored in this work is the CNN [4],

which is a major neural network used in the field of computer

vision. CNN are based on the working of the visual neural

network of the brain [5]. They have been used widely and

research in this field has yielded many types of CNN [6]

architecture tailored for different uses such as image classi-

fication, object detection, natural language processing. These

CNN are complex and highly energy consuming as well as

computationally complex design and many work have been

done to reduce these issues[7]. The complexity and hardware

utilization is most for learning process involved where as the

forward pass is very much straight forward and simple and

there have been ideas where the learning and application of

solution have been achieved on separate dedicated hardware

[8][9]. This allows use of resource to be decentralized and

used as needed. Here we aim to produce a modular design

capable of implementing the forward pass of a CNN. Various

functional units are observed and broken into sub units and

they are implemented using different hardware logic to achieve

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 48 Vol.6, Issue.10, October 2020

mailto:jayakrishnanksk12@gmail.com
mailto:david@cet.ac.in
mailto:david@cet.ac.in

various versions that focus on speed, energy consumption and

hardware use respectively. These are to be used according to

application, CNN architecture and hardware availability.

II. METHODOLOGY

This paper will explore the design, simulation, synthesis,

implementation and improvement of the forward pass hard-

ware or learned solution executing hardware of a Convolu-

tional neural network, on a Spartan 6 FPGA.Xilinx Navigator

andVerilog HDL is used to design, simulate and synthesis the

hardware modules. The training and validation of various CNN

architecture are observed using TensorFlow 2 and python.

The layer wise operation of each component is observed.

The layer wise implementation of the CNN architecture is

achieved by identifying the various major layers that are used

with in it, such as Convolutional layer, pooling layer, fully

connected layer. The operations in each of these layers are

studied and expressed in arithmetic formulae form. They are

then implemented in hardware using most minimal hardware

use. The complex arithmetic is simplified or approximated

or implemented using look up tables. The core repetitive

units of each layer are identified and they are implemented

as modules using the least amount of hardware, complexity

and operational steps. This is possible because NN are made

of repeating units of node responsible for the learning and

implementation of learned solution. The overall design will be

such that by using user-controlled parameters one can control

the amount of hardware resources used in each implementation

as per device specification. The design will allow easy addition

of custom modules, flexibility in module selection as per func-

tional requirement, allowance of pipelining and parallelism of

the hardware. Through the implementation and study of CNN

in TenserFlow 2 it was found out that the major operations

in the forward pass are Tensor Multiplication, Addition, Com-

paration, and Division, all of this can be implemented using

storage and shift Registers, sufficiently sized Accumulators,

Mux and some basic gates.

III. RESULTS AND OBSERVATIONS

The most important component of CNN are its convolu-

tional layer in which the neural network tries to recognize

learned patterns in the input feature map. The idea of filters

convolving over the input FM can be simplified as element

wise multiplication of indexed matrices and subsequent sum-

mation of these results. This is what happens in each node of

a convolutional layer. There are many ways of implementation

of the convolutional layer. Here we will explore the case

where the filter weights and image pixels are given as inputs

along with other synchronization and control signals the output

feature map is received as pixels array. The data type of

the input and output are binary integers. They are given and

received from the modules as array of 16-bit sign data. For real

values we use fixed point arithmetic as it reduces the hardware

requirements, energy consumption and computational cost.

Each module designed has a set of parameters that can be

adjusted to control size of the data related to inputs output

and sub module counts used. The tensor convolution which

is the most important part of this layer can be achieved as

follows.

Segment input into filter size tensors then feed it to each

node module. This process will require substantially more

hardware but is less time consuming. Another way is to

read the entire input and implement apply multiple filters

to different segments simultaneously which is also hardware

exhaustive. The low hardware utilizing method is to identify

the basic repeating operation and use the module of it in

a synchronized scheduled fashion where the overall time

may over shoot. But the time over shoot can be controlled

using CNN fastening algorithms and methods such as FFT

or depth wise and point wise separable convolution. The

fully connected layer can be achieved from a convolutional

layer by setting filter size equal to input and setting shift

parameter to zero. All the operation in the Convolutional layer

was seen to be achieved using accumulation as the key base

factor hence using Accumulator, shift registers, multiplexers

and logic gate low hardware module was designed, simulated

and synthesized. Other relatively higher hardware consuming

Fig. 1. input segmenting simulation result

Fig. 2. Direct 2D convolution result

Fig. 3. Direct 2D convolve module schematic top view and hardware use

modules were also designed, simulated and synthesized for

various comparative purposes. From the study of various CNN

architecture in TensorFlow 2 it was observed that weight

approximation to 1/1000 of the decimal place will not affect

the performance of the model.The simulation results for input

segmenting module is shown in figure 1 where the given

input is stored in a memory block T as a 2D tensor. figure

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 49 Vol.6, Issue.10, October 2020

2 shows the simulation result of a 2D convolve module result

of direct convolution between two such tensors are shown in

an internal memory module and also as a stream output. Figure

3 shows the synthesis result for the above mentioned modules.

The pooling layer was also implemented in such a way. The

pooling aimed at reducing input data size involves a design

where the filter inputs were removed and accumulators where

the key operating elements. The simulation result of Maxpool

module is shown in figure 4. followed by the synthesis result

in figure 5.

Fig. 4. Direct Maxpool simulation result.

Fig. 6. lookup simulation result.

Fig. 7. Softmax module schematic top view and hardware use of lookup
module

Fig. 5. Direct Maxpool module schematic top view and hardware use

The activation functions used here are Softmax and ReLU

for classification cases. Softmax is a computationally demand-

ing module implemented using accumulators or lookup tables

in different modules as the need arises.The simulation result

of Softmax lookup is shown in figure 6 and synthesis result

is shown in figure 7. along with the looup the softmax also

use divider module whose synthesis result is shown in figure

8. ReLU is achieved using Multiplexers and the sign bit of

the input data. The simulation result of ReLU is shown in

figure 9 and synthesis result is shown in figure 10. The input

data to the higher-level modules are segmented and fed to sub

modules as per submodule count. The results are approximated

to fit the pre-set data size with addition of a scaling matrix

that keep track of the quantitative size of approximated result

in case of over flow. Values of low scale are approximated to

null and null result operations are ignored using logic control.

Thus reducing computation cost. The element wise matrix

multiplication can be achieve using Verilog default multiplier,

or custom multiplier consisting of a shift register and accumu-

lator. the simulation result of both modules are shown in figure

11 and synthesis result is shown in figure 12.13. The indexed

element accessing is achieved using counters also implemented

with shift register and accumulation. Comparators used for

flow control can also be implemented using accumulators

and logic gates. The figure shows the result. The schematics,

simulation result and hardware usage of accumulator are show

Fig. 8. Divider module schematic and hardware use

Fig. 9. ReLU simulation result.

Fig. 10. ReLU module schematic top view and hardware use

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 50 Vol.6, Issue.10, October 2020

Fig. 11. multipliers simulation result. Fig. 14. Accumulator module schematic, simulation result and hardware use

REFERENCES

[1] Simeone, Osvaldo. ”A brief introduction to machine learning for engi-
neers.” arXiv preprint arXiv:1709.02840 (2017).

[2] Martı́nez Selva, José Sánchez-Navarro, Juan Bechara, A Román,

Fig. 12. Default multipliers module schematic view and hardware use

Fig. 13. Custom multiplier module schematic and hardware use

in figure 14 . As one can see different modules have different

hardware consumption and operation time. The two multiplier

modules are one such example where the default one uses a

DSP module where other resources are used sparingly and in

the other DSP was not used while other modules were used

more. Likewise each module has its on significance to enable

implementation in various ways.

IV. CONCLUSION

In this work a flexible design model for forward pass imple-

mentation of a CNN is designed.These customizable modules

require less hardware and are computationally efficient. These

modules can be used to build an HDL library of neural

networks. The future works include improvement of speed and

performance without compromise hardware utilization using

new algorithms. Design of new base modules and Updating of

existing modules for better performance of said base modules.

Development of better communication interface for the design.

F. (2006). Brain mechanisms involved in decision-making. Revista de
neurologia. 42. 411-8.

[3] Nielsen, Michael A. Neural networks and deep learning. Vol. 2018. San
Francisco, CA: Determination press, 2015.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. Adv. Neural
Inf.Process. Syst., 2012, pp. 1097–1105.

[5] M. A. Ponti, L. S. F. Ribeiro, T. S. Nazare, T. Bui, J. Collomosse, Every-
thing you wanted to know about deep learning for computer vision but
wereafraid to ask, in: 2017 30th SIBGRAPI Conference on Graphics,
Patternsand Images Tutorials (SIBGRAPI-T), IEEE, 2017, pp. 17–41.

[6] Alyamkin, Sergei, Matthew Ardi, Alexander C. Berg, Achille Brighton,
Bo Chen, Yiran Chen, Hsin-Pai Cheng et al. ”Low-Power Computer Vi-
sion: Status, Challenges, and Opportunities.” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems 9, no. 2 (2019): 411-421.

[7] Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
”Mobilenets: Efficient convolutional neural networks for mobile vision
applications.” arXiv preprint arXiv:1704.04861 (2017).

[8] Solovyev, Roman A., Alexandr A. Kalinin, Alexander G. Kustov,
Dmitry V. Telpukhov, and Vladimir S. Ruhlov. ”FPGA implementation
of convolutional neural networks with fixed-point calculations.” arXiv
preprint arXiv:1808.09945 (2018).

[9] Abtahi, Tahmid, Colin Shea, Amey Kulkarni, and Tinoosh Mohsenin.
”Accelerating convolutional neural network with fft on embedded hard-
ware.” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 26, no. 9 (2018): 1737-1749.

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 51 Vol.6, Issue.10, October 2020

