
Real Time Smart Carpooling and Ride sharing system using

Kotlin

Mohamed Mustafa. M, Afridin. J, Mohamed Salman Faris. M, Mohammed Afrid. A

Department of Computer Science and Engineering,
Dhaanish Ahmed Institute Of Technology, Coimbatore, Tamilnadu, India.

Abstract—Many carpool and ride-sharing
solutions have been proposed and even developed
in the previous decades, but rarely have they been
able to attain a global user base, at least not up
until recently. That was mostly because many of
them were not initially designed as scalable,
leaving their users with a sub-par user
experiences as their user base grew, and often
their mobile or desktop client reach was not
ubiquitous enough, leaving them available only to
a small portion of mobile client devices and/or
desktop browsers. This paper describes the
design concepts, distribution and cloud computing
strategies the authors feel any future global
carpool and ride-sharing solution could follow,
making it very scalable and ubiquitous enough to
successfully reach and serve a global user base.

I. INTRODUCTION

The carpooling, thus also the ride-sharing industry,

has only recently started becoming globally

interesting. However, carpooling formally appeared

in the US in the mid-1970s, after the 1973 oil crisis

[1]. At that time the rising costs of using a personal

vehicle for transportation of only one passenger

made it prudent to drive more than one passenger,

usually co-workers commuting daily to and from

the same workplace, splitting transportation costs.

However, the reduction of oil and gas costs in the

1980s and the breakdown of a typical 9AM to 5PM

workday in the 1990s led to a spiral down trend in

carpooling popularity. Federal government in the US

tried to counter such a trend by giving incentives to

carpooling drivers, growing the number of no- toll

carpool lanes–the so called, High Occupancy

Vehicle (HOV) lanes–across many highways. Those

lanes were also allowing for relief from ever

growing traffic jams and gridlocks, as the number

of vehicles on the roads was ever increasing, which

in 2000 exceeded 740 million globally [2] and was

projected to be over 2 billion motorized vehicles by

2030 [3]. The sheer number of vehicles alone

will create many well-documented problems for

urban areas, such as increased traffic, increased

pollution, parking congestion, and the need for

expensive infrastructure maintenance. To reduce

those and also personal transportation costs why not

make a global real-time carpool and ride-sharing

solution?

A. Problems

As said, the expenses, both environmental and

fiscal, of single occupancy vehicles could be

reduced by utilizing the empty seats in personal

transportation vehicles. Carpooling and ride-

sharing target those empty seats: taking

additional vehicles off the road reducing traffic

and pollution, whilst providing opportunities for

social interaction. However, historically carpool

scheduling often limited users to consistent

schedules and fixed rider groups–carpooling to

the same place at the same time with a set person

or a group of people. To make that problem

worse, the leading problem concerns, given in a

2009 survey about why people don’t carpool,

were difficulty to organize carpools and

inconvenience of organization [4]. We feel both

of those can be addressed by employing some

novel web technologies and modern day

available data stores which hold social and

location based individual user’s data. Besides

having to solve the aforementioned problems for

making a carpooling and ride-sharing solution

that users will want to use, to make it usable on a

global scale the ubiquity problem should also be

addressed. By ubiquity we mean the problem of

having to make it available across both various

mobile and desktop platforms, current and future

ones, so our proposed solution also utilizes few

other rather novel web technologies.

This paper attempts to propose concepts,

distribution and cloud strategies that we feel will

bring best value for any future global carpool and

ride-sharing solution. The rest of the paper is

organized as follows: Section II overviews some

related work. Section III gives overall design

concepts and our objective. Section IV elaborates

on our proof-of-concept prototype system

implementation choices, with subsections focusing

on several specifics. Section V discusses our future

work, plans and intentions and finally Section VI

concludes this paper.

II. RELATED WORK

As noted, this section deals with existing

carpool related work. Subsection A reviews

carpool and ride-sharing related solutions

currently available and subsection B surveys

some of the literature and papers on the subject.

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 123 Vol.7, Issue.4, April 2021

Current carpool and ride-sharing solutions

Entering carpool and ride sharing search terms in
some of the largest mobile app store and internet

search engines returns a great deal of mobile apps
and internet websites offering either classic or

dynamic carpooling and ride- sharing. Classic
carpool mobile app or website indicates that its users

effectively schedule and advertise their plans for a
trip well in advance, effectively via a searchable

electronic bulletin board, seeking other users
travelling in the same direction at the same time

either in part or fully. Although some of those apps
and websites, such as carpooling.com [6] and its
mobile client apps have their uses and large user

bases, the static routing problems they help solve
makes those uses fairly limited.

The inconvenience of having to search though
large carpools or even smaller but fixed choice driver

groups, hoping to amongst them find a pre-scheduled
and advertised trip adequately consistent with one

owns schedule, makes such apps or websites non-
practical for relatively short and near-immediate on-

the-go carpool and ride sharing trip plans. It is for
that reason that even [6] and its large network of
European subsidiary websites, added advanced time

constrained search features to “find a lift”, which to a
certain extent alleviate some of the inconveniences

for their on-the- go passenger users. However, the
added hourly time- constrained advanced searching

still inconveniences their vehicle driving users to be
mindful of their advertised pre- trip given schedules,

even though that may not always be objectively
possible, due to unforeseen events such as: road

accidents, gridlocks, etc.
Thus, a new form of dynamic carpool and ride-

sharing mobile apps and websites is emerging,
indicated by their use of real-time passenger requests
along with real-time vehicle driving users’ location

data, foregoing the need for well in advance pre-
scheduled and advertised trips. Amongst some of the

most known and pioneering mobile apps and
websites offering dynamic carpooling and ride-

sharing are Lyft [21] and SideCar [22], screenshots
of their mobile apps are given in Fig. 1.

Fig. 1 - Screenshots of mobile applications

from lyft.me and side.cr

Both of the listed mobile apps are available

for iOS as well as for Android mobile platform,
from which screenshots are taken, but neither

currently present a web browser user interface.
This is probably intentional since both mobile

apps are natively written, and by our observations
both use TCP sockets to communicate with their

respective backend services, so they would both
need some changes to make them web-friendly.

Unfortunately, those code changes could include
some rather tedious transformations because
native TCP socket traffic has not been well suited

for consumption in web browsers relying
dominantly on HTTP, until recently. Another

popular application and website named Waze [7],
which isn’t predominantly used for carpool and

ride-sharing, but for gridlock traffic reporting and
avoidance, seems to have however taken another

approach. Although their mobile apps are
currently natively written, the website does

present a "live map" user interface which maps
events reported by their users. Such events
include pickup requests and replies of passenger

and vehicle driving Waze users who are
otherwise linked in a popular social network.

Unfortunately, access to those real-time events is
currently only provided to its iOS app users and

not through backend GeoRSS feed via HTTPS.
The original GeoRSS XML format is

transformed to JSON for easier web browser
JavaScript consumption, and presumably for

traffic overhead reduction, but is still limited in
update interval time. To our knowledge, there are
no other globally popular websites and mobile

apps that currently allow for carpool and ride-
sharing uses using any other drastically different

approaches.

A. Current carpool and ride-sharing papers

Because static variety carpool still represents

the majority of existing solutions, almost all of
the available papers and literature on carpool and

ride-sharing mainly tackle the static ridesharing
issues, whereby users must pre-schedule their

trips, neglecting the dynamic aspect. Despite
much of the progress experimented on dynamic
carpooling and ride- sharing concepts thanks to

the current solutions, it still remains in the early
stages regarding publicly available works and

literature that deal with its real-time automation.
In order to make up for that shortfall, some of the

papers which mention carpooling and ride-
sharing, and even some that did considered the

dynamic aspect [8], in majority also considered
other issues beside the static and dynamic

carpooling and ride-sharing problems at the same
time. Some papers are especially involved in the

concepts of traceability, communication and

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 124 Vol.7, Issue.4, April 2021

security services, which their authors feel that
none of the current solutions evoked, identifying

the security issues as one of the main reasons
hindering their success [9]. All cited current

papers admittedly still provided us with a lot of
beneficial ideas and food for thought transferred

onto this paper, its findings and conclusions, and
out of that still quite disorganized literature which

tackles a lot of issues, we have identified some yet
non-tackled, laid out in the following sections.

Mainly, we take issue with web browser user
interfaces and standardized web technologies
which seem to be the unifying way forward,

putting ubiquity in the grasp of every hybrid web
and mobile application.

III. DESIGN

In the previous section we cited some of the

current solutions, ideas and issues tackled in
carpooling and ride- sharing recently. In this section

we are building up on those solutions and ideas,
proposing some of our own design concepts for a
global dynamic real-time carpooling and ride- sharing

solution. Subsection A describes some of design
concepts we feel are suitable for a real-time dynamic

carpooling and ride-sharing solution. Subsection B
further extends on A, allowing for the proposed real-

time solution to tackle the problem of being able to
serve up to a global user base, adding cloud and

distribution design concepts. Finally, subsection C
tries to deal with the ubiquity problem, considering

the client user interface technology we feel will be
future-proof and available on almost all new mobile
and desktop platforms.

A. Real-time dynamic solution design concepts

As it was noted in section II, real-time dynamic

carpooling and ride-sharing solutions are becoming
more common amongst the current carpooling and

ride-sharing solutions, although it takes more
designing effort to achieve real-time dynamic

capabilities than for mere static carpooling and ride-
sharing. The reason for the recent increase is

obviously because real-time dynamic solutions are
more convenient, and thus more likely to be used in
greater numbers by end users, but also because some

technologies previously used for seemingly real-time
communication on the web, have only recently

matured and have been standardized.
In the begging of the so called Web 2.0, at the time

when real-time updating websites were only just
starting to appear, most of those websites used

Asynchronous JavaScript and XML (AJAX) [10],
which is a group of interrelated web development

techniques used on the client-side to create
asynchronous, seemingly real-time web applications.

Most of those techniques relied upon regular HTTP, a
simple request-response and stateless protocol.
Having to achieve what was usually two-way

communication took some effort for websites and
web applications, using various workarounds,

techniques involving the use of the browser

XmlHttpRequest object or some other web browser
plugins.

The first workarounds developed into techniques
known as: frequent polling, long-polling and the so

called forever- frames. Although all of those
techniques were, and still are, very much usable for

seemingly real-time web page updates without
requiring full page refreshes, they had drawbacks.

Their primary drawback was, notwithstanding
client-side implementation difficulties, the amount

of server-side and network resources they consume.
The server is either forced to respond to a large
number of frequent requests, or it opens up a number

of long running responses, which additionally
occupy its hardware resources. On the other hand,

using workarounds such as various browser plugins,
although less network and server-side resource

demanding, turned out to be non-practical, because
of the lack of plugin support on current mobile

devices. For such reasons, new techniques were
developed, and recently standardized by the W3C.

As part of the HTML5 specification Server-Sent
DOM Events

(SSE) were standardized in 2011 [11], but have

not yet been implemented by all desktop
browsers, namely, Internet Explorer. However,
Web Sockets API [12], drafted a protocol back

in 2009 currently supported by all major web
browsers. Web Sockets provide a full-duplex

communication channel over a single TCP
connection, thus allowing for a lower network

latency time due to less traffic overhead
compared to HTTP. Compared to SSE and other

polling techniques Web Sockets provide the best
option for building real-time communication on

the web, and that is why such a protocol is part of
our proposed design concept.

B. Distribution and cloud design concepts

Having chosen Web Sockets (WS) as a

preferred means of communication, although
helping solve latency issues which can lead to a

great number of performance problems in
building real-time solutions, left another issue
unsolved. WS based communication, as all

others, still has a limit on the maximum number
of simultaneous clients connected to a single

server node. Even though that number may be
greater when using WS, it still depends on

available server hardware resources. Since
vertical scaling of server hardware resources can

be expensive and still limiting, the solution to the
problem is horizontal distribution, across

multiple server nodes. Ideally, any global real-
time solution would be best served in one’s own

server farm, but given hardware and its
maintenance costs, renting cloud resources works
as well. However, for horizontal scaling, one

needs to be able to scale data also. Since
traditional, i.e. relational data scaling is much

harder [13], we have turned to non-relational data

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 125 Vol.7, Issue.4, April 2021

Vehicle driving users Passenger users

cloud

Memory Cache Messaging Backplane

NoSQL shard NoSQL shard

Server node Server node

(NoSQL). NoSQL databases besides easier
scaling, offer better performance in data writes, as

well as a possibility of scaling reads onto multiple
database nodes, combining sharding and some

parallelism approaches. Utilizing the two in a
document oriented NoSQL data store that supports

geospatial data indexing would make it a perfect
fit for our proposed solution and storing our users’
location based data. Also, a key-value memory
caching NoSQL data store could be used as a

messaging backplane for communication between
our individual server nodes, but that use is trivial.

C. User interface architecture design concepts

To make a website or mobile app truly

ubiquitous, one needs to support as many different

desktop and mobile platforms as possible, ideally

all of them. Although client applications can be

natively written for each platform, there are some

unifying user interface technologies for almost all

current desktop and smartphone mobile platforms

today.

So, to achieve ubiquity, we propose the use of

combined HTML5/CSS3 for user interface (UI)

rendering. Building the UI around streamed real-

time data flows of state changes created by

passenger and vehicle driving user events (users

requesting rides, user driving busy, user driving

free, etc.) is why the paradigm of reactive

programming seems to be the perfect choice.

Reactive programming is not to be confused with

responsive web design, which is also utilized, for

same UI reuse across various device screen

resolution sizes.Any changes in state registered by

user client applications are asynchronously

transferred via WS to distributed load balanced

cloud server nodes which are displayed in Fig. 2.

Fig. 2 - Basic design diagram

IV. PROTOTYPE

IMPLEMENTATION

This section describes in more detail some of the

implementation choices we used to build the

prototype of our distributable cloud-based dynamic

real-time carpooling and ride-sharing solution.

Subsection A describes our prototype’s real-time

communication transport library choice. Subsection

B deals with our use of NoSQL data stores for

geospatial indexed data and fast memory caching

messaging backplane implementation, along with

our choices of NoSQL technology and products

used. Subsection C goes into some of our UI

implementation details.

A. Real-time communication

Having helped develop the first online taxi

dispatching solution in Serbia, realized in .NET and

being cloud-hosted on Microsoft Azure [14],

influenced a lot of our primary technology choices

for the prototype of a real-time dynamic carpooling

and ride-sharing solution to be described here.

As noted in the design section, the need to have a

real- time dynamic carpooling and ride-sharing

solution is imperative, since those solutions are

what most users currently wish to use. To make our

prototype solution real- time capable, the choice to

implement it using a library capable of WS protocol

communication in .NET came down to a library

named SignalR [15]. SignalR is an open-source

library for ASP.NET to add real-time web

functionality to

.NET applications, adding the ability for server-side

code to push content to the connected clients as it

happens, in real- time. SignalR server is capable of

supporting clients written in .NET, JavaScript and

some other programming languages. The server-side

code can push content to those connected clients via

a number of transport techniques, most suitable

being bi-directional WS, if available. For a server-

side the WS transport requirements are either a self-

hosted ASP.NET

4.0 application or one hosted within Internet

Information Services (IIS) 8. Server-side hosted

on earlier versions of IIS fallbacks to other means

of message transports. For clients, WS

requirement issue is a bit lengthier to describe, so

it is listed in better detail in the client UI

subsection.

B. NoSQL implementation

Since IIS 8 was our prototype’s hosting

platform of choice, it should be noted that the

server node could then only have been hosted

within the Windows 8 / Server 2012 OS

platforms. Fortunately, Windows Server 2012

was made available to end-users on the Windows

Azure cloud platform as a virtual machine

operating system choice since late 2012, and it is

deployable onto an Extra Small machine

instance. Extra Small Windows Azure instance,

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 126 Vol.7, Issue.4, April 2021

which entails a shared core processor with only

768MB RAM, may not be the first choice from a

performance standpoint. However, it is sufficient

for proof-of-concept deployments and for limiting

cloud-hosting costs.

Deploying SignalR server-side code alongside a

NoSQL key-value memory cache data store

named Redis [16], with the minimum amount of

RAM allocated to Redis, produced a fully

functioning server node capable of serving a test

number of simultaneous users. Since a new server

node can be cloned, and any cloned node’s Redis

instance can then be easily subscribed to a Redis

instance of an existing node, we can easily

increase the number of new server nodes to meet

all of our scaling needs. Scale out is so easily

achieved in part due to SignalR's in-built scaling

mechanisms, which uses Redis pub/sub features

for a messaging backplane. Each SignalR server

node could then, through its Redis instance, be

notified of any new WS communication channel

needed in real-time. The load balancer of

connected computing cloud instances, which is

built into Windows Azure, takes care of diverting

traffic to a SignalR server node best able (least

busy) to process any incoming new or reoccurring

real- time request. But since each node has then

been notified, by its Redis instance, that such

communication has taken place each channel

should be reusable by any other SignalR node, so

each node is capable of replying to any real-time

request.

Beside Redis NoSQL, our prototype

incorporated another NoSQL document-oriented

geospatial indexing data store for ease of scaling,

named MongoDB [17]. MongoDB allows for rapid

storing of user current locations by extensions to

the stored location data, incorporating another

key value used for sharding of that data across

multiple MongoDB store instances. Data

sharding approach allows for quicker reads since

our shard key represents a geographical area

within which our users are seeking or soliciting

ride request during their relatively short trips.

Thus, sharding increases read performance by

reducing the amount of indexed data being

queried in each MongoDB instance, because that

data gets spread out across multiple data store

instances. By adding MongoDB’s built-in

MapReduce (MR) to our queries the tasks of

searching through sharded data execute in parallel.

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 127 Vol.7, Issue.4, April 2021

Also, MongoDB by itself incorporates

some replication set mechanisms, giving

it a highly-available aspect as well, which

bodes well with the SignalR’s ability to

distribute via Redis as a messaging

backplane, reducing single points of

failure.

C. User interface

Finally, for ubiquity reasons, our

choice of prototype client UI rendering

technology incorporated HTML5/CSS3.

Having previously built a fully functional

HTML5/CSS3 client for a commercial

online taxi dispatcher, which was

wrapped as an app using a mobile

development platform named PhoneGap

[18] runnable across various mobile

platforms, we felt confident that

HTML5/CSS3 was also a right choice.

Both desktop and mobile web clients

shared the same JavaScript logic codebase

which offered unified access to

geolocation [19] features of the devices

they all ran on, a must for a dynamic

carpooling and ride-sharing applications.

The look and feel across smaller

resolutions changes accordingly, but not

drastically, by utilizing responsive CSS3

design incorporated in jQuery mobile [20]

as of version 1.3.

All the clients also use a reactive

programming paradigm, connecting to

the backend via code using the Reactive

extensions for JavaScript (RxJS) library

[21]. This means the user interface

responds asynchronously to user actions

and events which they result as, either

events which are streamed from the

server-side generated by other users and

fed via WS to all supporting clients, or

user’s own events. If, per chance, the

mobile device's web browser does not

support WS transport, SignalR client in

JavaScript will gracefully fall back to

other means of seemingly real-time

transports, which RxJS will still continue

to process as asynchronous events.

Support for WS as a mean of

communication transport, depends

primarily on a platform web browser’s

capabilities which is for current desktop

and mobile web browsers given in Table

I.

TABLE I.

WEB BROWSER SUPPORT

Web browser Supported

since version

Supported

Internet
Explorer

10.0 (fully) Yes

Firefox 4.0 (partially)

6.0 (fully)

Yes

Chrome 4.0 (partially)

14.0 (fully)

Yes

Safari 5.0 (partially) Yes

6.0 (fully)

Opera
11.0 (partially) Yes

12.1 (fully)

iOS Safari
11.0 (partially) Yes

12.1 (fully)

Opera Mini
- No

Android
Browser

- No

BlackBer

ry
Browser

7.0 (fully) Yes

Opera Mobile
11.0 (partially) Yes

12.1 (fully)

Crome

for
Android

25.0 (fully) Yes

Firefox

for
Android

19.0 (fully) Yes

Firefox

OS

Boot2Gec

ko

1.0.0-
prerelease
(fully)

Yes

Tizen OS
2.0.0a-

emulator
(fully)

Yes

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 128 Vol.7, Issue.4, April 2021

FOR WEBSOCKETS

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 129 Vol.7, Issue.4, April 2021

V. FUTURE WORK

Having described some our prototype’s

implementation details (Fig. 3) our future work and

plans envision for it to be deployed and tested in the

real-world. Since the prototype clients were based on

previous work done for a commercial online taxi

dispatcher, it will be initially tested and deployed as

part of that solution in limited numbers. Early

adopters of the online taxi dispatching service will

get the benefit of being able to track a few assigned

taxis in real-time. Drivers of those taxis will be either

issued mobile devices with pre- installed

HTML5/CSS3 web clients and/or those client apps

will be installed on their own devices. Such real-

world tests will hopefully lead to identifying

problems not yet foreseen. Once a stable solution is

reached the prototype could and will become a

standalone service, open for public use and not just

for taxi dispatching and the cost of its operational

maintenance could then also be better estimated. If

deemed low enough to be offset by ad support

according to [20], its use could be completely free for

end users unlike [21, 22].

To reach that point however, some other issues,

such as

security and privacy, will also need to be tackled. In

[5] the solution for the security and privacy issue

was implied by use of a 3rd party location based

service (LBS), which used OAuth protocol to

authenticate and subsequently authorize which exact

set of users would be allowed access to the

authorizing user’s location. Unfortunately, come

February 2013 the 3rd party LBS was shut down,

and an alternative solution should either be found or

developed prior to prototype’s launch as a

standalone service. Trying to avoid the repeat of

having to find alternatives to a 3rd party

components not being operational any more, the

focus could be on building up own LBS features

respective of privacy, but relying on information

which can be provided from popular social

networks. To aid us in that endeavor, instrumental

part of the puzzle could be Windows Azure built-in

Access Control Service (ACS), allowing for users to

single sign-on to the proposed carpool and ride-

sharing service just as if they were signing into the

aforementioned social networks. If those users

comply, their location data could then only be made

accessible to a subset of their social network friends,

a widely acceptable solution from a current privacy

standpoint.

VI. CONCLUSION

This paper tried to underscore the need for

developing dynamic real-time carpool and ride-

sharing solutions, instead of already outdated

static ones, by employing some novel web

technologies and approaches. Since a prototype

has been successfully developed following the

outlined design concepts, distribution and cloud

strategies, it is obviously possible to build other

such solutions using the same approaches.

Especially interesting is the possibility to develop

a web platform application that runs across

multiple devices and their web browsers, be they

mobile or desktop.sing an open-source jQuery

mobile library and Apache Cordova [23] mobile

developer platform, which was derived from

PhoneGap, is what interests us the most and we

feel could be the unifying tools for any future

service supposedly usable across multiple

operating systems, current and future. Combining

those with some other frameworks which use the

HTML5 UI elements such as the canvas tag thus

adding the ability to render graphical data such as

street level maps for carpool should, by our

position, be the leading way forward.i

VII. REFERENCES

[1] Ozanne, L., & Mollenkopf, D. (1999).
“Understanding consumer intentions to
carpool: a test of alternative models.” In

Proceedings of the 1999 annual meeting of
the Australian & New Zealand Marketing

Academy. smib.vuw.ac.nz (Vol. 8081).
[2] Fraichard, T. (2005). “Cybercar: l'alternative

à la voiture particulière.” Navigation (Paris),
53(1), 53-74.

[3] Dargay, J., & Hanly, M. (2007). “Volatility of

car ownership, commuting mode and time in

the UK.” Transportation Research Part A:
Policy and Practice, 41(10), 934-948.

[4] Massaro, Dominic W., et al. (2009)

"CARPOOLNOW: Just-in-time carpooling
without elaborate preplanning." the 5th

International Conference on Web Information
Systems and Technologies. Lisbon, Portugal.

2009.
[5] Dimitrijević, D., & Luković, I., &

Dimitrieski, V., & Vasiljević, I. (2013)
“Orchestrating Yahoo! FireEagle location

based service for carpooling” 3rd
International Conference on Information

Society Technology and Management,
Kopaonik, Serbia, 2013.

[6] The largest car sharing network for cheap,
green travel in Europe.
Web - carpooling.com

[7] Outsmarting traffic, together. Web - waze.com
[8] Sghaier, M., Zgaya, H., Hammadi, S., &

Tahon, C. (2011). A Distributed Optimized
Approach based on the Multi Agent Concept

for the Implementation of a Real Time
Carpooling Service with an Optimization

Aspect on Siblings. International Journal of

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 130 Vol.7, Issue.4, April 2021

Engineering (IJE), 5(2), 217.
[9] Sghaier, M., Zgaya, H., Hammadi, S., & Tahon,

C. (2010, September). A distributed dijkstra's
algorithm for the implementation of a Real Time

Carpooling Service with an optimized aspect on
siblings. In Intelligent Transportation Systems

(ITSC), 2010 13th International IEEE
Conference on (pp. 795-800). IEEE.

[10] Garrett, J. J. (2005). Ajax: A new approach to web
applications.

[11] Hickson, I. Server-Sent Events, W3C Working

Draft 20 October 2011.
[12] Hickson, I. (2010). The Web Sockets

API, W3C Working Draft 29 October
2009.

[13] Cattell, R. (2011). Scalable SQL and

NoSQL data stores. ACM SIGMOD
Record, 39(4), 12-27.

[14] Najbrži put do slobodnog vozila. Web -
taxiproxy.com

[15] ASP.NET SignalR : Incredibly simple real-time
web for
.NET. Web –
signalr.net

[16] Redis. Web – redis.io
[17] MongoDB. Web – mongodb.org
[18] PhoneGap. Web – phonegap.com
[19] Popescu, A. (2010). Geolocation api

specification. World Wide Web Consortium,

Candidate Recommendation CR-geolocation-
API- 20100907.

[20] Goldstein, D. G., McAfee, R. P., & Suri, S.

(2013, May). The cost of annoying ads. In
Proceedings of the 22nd international

conference on World Wide Web (pp. 459-470).
International World Wide Web Conferences

Steering Committee.
[21] Lyft. Web – lyft.me
[22] SideCar. Web – side.cr
[23] Apache Codrova. Web – cordova.apache.org

International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST)

ISSN (ONLINE):2456-5717 131 Vol.7, Issue.4, April 2021

